
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3958350/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA expression in the adult mouse central nervous system. Rna, 2008, 14, 432-444.	1.6	427
2	Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nature Protocols, 2007, 2, 2520-2528.	5.5	221
3	The anatomy and innervation of the mammalian pineal gland. Cell and Tissue Research, 2002, 309, 139-150.	1.5	211
4	Immunocytochemical demonstration of retinal S-antigen in the pineal organ of four mammalian species. Cell and Tissue Research, 1985, 239, 81-85.	1.5	132
5	Night/Day Changes in Pineal Expression of >600 Genes. Journal of Biological Chemistry, 2009, 284, 7606-7622.	1.6	130
6	Efferent projections from the periventricular and medial parvicellular subnuclei of the hypothalamic paraventricular nucleus to circumventricular organs of the rat: APhaseolus vulgaris-leucoagglutinin (PHA-L) tracing study. Journal of Comparative Neurology, 1991, 306, 462-479.	0.9	86
7	Circadian changes in long noncoding RNAs in the pineal gland. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13319-13324.	3.3	83
8	Tyrosine hydroxylase- and neuropeptide Y-immunoreactive nerve fibers in the pineal complex of untreated rats and rats following removal of the superior cervical ganglia. Cell and Tissue Research, 1991, 265, 63-71.	1.5	70
9	Expression of theOtx2homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland. Journal of Neurochemistry, 2006, 97, 556-566.	2.1	63
10	Expression of the Homeobox Genes <i>OTX2</i> and <i>OTX1</i> in the Early Developing Human Brain. Journal of Histochemistry and Cytochemistry, 2010, 58, 669-678.	1.3	56
11	Monoaminergic systems in the brainstem and spinal cord of the turtlePseudemys scripta elegansas revealed by antibodies against serotonin and tyrosine hydroxylase. Journal of Comparative Neurology, 1992, 325, 527-547.	0.9	54
12	Ontogenetic expression of the Otx2 and Crx homeobox genes in the retina of the rat. Experimental Eye Research, 2007, 85, 65-73.	1.2	53
13	Melatonin Synthesis: Acetylserotonin O-Methyltransferase (ASMT) Is Strongly Expressed in a Subpopulation of Pinealocytes in the Male Rat Pineal Gland. Endocrinology, 2016, 157, 2028-2040.	1.4	53
14	Developmental and Diurnal Dynamics of Pax4 Expression in the Mammalian Pineal Gland: Nocturnal Down-Regulation Is Mediated by Adrenergic-Cyclic Adenosine 3′,5′-Monophosphate Signaling. Endocrinology, 2009, 150, 803-811.	1.4	49
15	Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina. Experimental Eye Research, 2008, 87, 471-477.	1.2	48
16	The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus. Brain Structure and Function, 2015, 220, 1497-1509.	1.2	44
17	NeuroD1: developmental expression and regulated genes in the rodent pineal gland. Journal of Neurochemistry, 2007, 102, 887-899.	2.1	43
18	Pineal function: Impact of microarray analysis. Molecular and Cellular Endocrinology, 2010, 314, 170-183.	1.6	43

#	Article	IF	CITATIONS
19	Circadian clock components in the rat neocortex: daily dynamics, localization and regulation. Brain Structure and Function, 2013, 218, 551-562.	1.2	42
20	Light-induced c-Fos expression in suprachiasmatic nuclei neurons targeting the paraventricular nucleus of the hamster hypothalamus: Phase dependence and immunochemical identification. Journal of Comparative Neurology, 2002, 442, 48-62.	0.9	41
21	Expression of the homeobox genes <i>PAX6</i> , <i>OTX2</i> , and <i>OTX1</i> in the early human fetal retina. International Journal of Developmental Neuroscience, 2009, 27, 485-492.	0.7	40
22	Homeobox Genes in the Rodent Pineal Gland: Roles in Development and Phenotype Maintenance. Neurochemical Research, 2013, 38, 1100-1112.	1.6	39
23	Methionine Adenosyltransferase:Adrenergic-cAMP Mechanism Regulates a Daily Rhythm in Pineal Expression. Journal of Biological Chemistry, 2005, 280, 677-684.	1.6	38
24	Characterization of the Cholecystokinin and Gastrin Genes from the Bullfrog, Rana catesbeiana: Evolutionary Conservation of Primary and Secondary Sites of Gene Expression. Endocrinology, 1997, 138, 1719-1727.	1.4	37
25	Proteomic analysis of day–night variations in protein levels in the rat pineal gland. Proteomics, 2007, 7, 2009-2018.	1.3	37
26	Developmental and daily expression of the <i>Pax4</i> and <i>Pax6</i> homeobox genes in the rat retina: localization of Pax4 in photoreceptor cells. Journal of Neurochemistry, 2009, 108, 285-294.	2.1	37
27	Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4). Molecular and Cellular Endocrinology, 2010, 314, 128-135.	1.6	37
28	Cellular lining of the sheep pineal recess studied by light-, transmission-, and scanning electron microscopy: Morphologic indications for a direct secretion of melatonin from the pineal gland to the cerebrospinal fluid. Journal of Comparative Neurology, 2003, 456, 39-47.	0.9	36
29	Presence of a pineal nerve (Nervus pinealis) in the human fetus; a light and electron microscopical study of the innervation of the pineal gland. Brain Research, 1978, 154, 1-12.	1.1	35
30	Spinal Cord Injury Enables Aromatic l-Amino Acid Decarboxylase Cells to Synthesize Monoamines. Journal of Neuroscience, 2014, 34, 11984-12000.	1.7	34
31	Daily Rhythm in Pineal Phosphodiesterase (PDE) Activity Reflects Adrenergic/3′,5′-Cyclic Adenosine 5′-Monophosphate Induction of the PDE4B2 Variant. Endocrinology, 2007, 148, 1475-1485.	1.4	33
32	A Novel Pineal-specific Product of the Oligopeptide Transporter PepT1 Gene. Journal of Biological Chemistry, 2005, 280, 16851-16860.	1.6	32
33	Circadian oscillators in the mouse brain: molecular clock components in the neocortex and cerebellar cortex. Cell and Tissue Research, 2014, 357, 743-755.	1.5	32
34	Vasoactive intestinal peptide in the hypothalamohypophysial system of the mongolian gerbil. Journal of Comparative Neurology, 1988, 273, 87-98.	0.9	31
35	Somatostatin and prosomatostatin in the retina of the rat: An immunohistochemical, in-situ hybridization, and chromatographic study. Visual Neuroscience, 1990, 5, 441-452.	0.5	31
36	Neuropeptide Y (NPY) and C-flanking peptide of NPY in the pineal gland of normal and ganglionectomized sheep. Journal of Comparative Neurology, 1992, 316, 238-250.	0.9	31

#	Article	IF	CITATIONS
37	Circadian Oscillations of Molecular Clock Components in the Cerebellar Cortex of the Rat. Chronobiology International, 2012, 29, 1289-1299.	0.9	30
38	Circadian Dynamics of the Cone-Rod Homeobox (CRX) Transcription Factor in the Rat Pineal Gland and Its Role in Regulation of Arylalkylamine N-Acetyltransferase (AANAT). Endocrinology, 2014, 155, 2966-2975.	1.4	29
39	Immunohistochemical localization of the somatostatin receptor subtype 2 (sst2) in the central nervous system of the golden hamster (Mesocricetus auratus). , 1999, 405, 247-261.		27
40	Crx broadly modulates the pineal transcriptome. Journal of Neurochemistry, 2011, 119, 262-274.	2.1	25
41	Cholinergic innervation and function in the mammalian pineal gland. Microscopy Research and Technique, 1999, 46, 281-295.	1.2	24
42	Spatiotemporal Distribution of <i>PAX6</i> and <i>MEIS2</i> Expression and Total Cell Numbers in the Ganglionic Eminence in the Early Developing Human Forebrain. Developmental Neuroscience, 2010, 32, 149-162.	1.0	24
43	Rax : developmental and daily expression patterns in the rat pineal gland and retina. Journal of Neurochemistry, 2011, 118, 999-1007.	2.1	23
44	The Perivascular Phagocyte of the Mouse Pineal Gland: an Antigenâ€Presenting Cell. Chronobiology International, 2006, 23, 393-401.	0.9	22
45	Demonstration of a protein immunochemically related to glial fibrillary acidic protein in human fibroblasts in culture. FEBS Letters, 1977, 83, 212-216.	1.3	21
46	Global daily dynamics of the pineal transcriptome. Cell and Tissue Research, 2011, 344, 1-11.	1.5	21
47	Prepro-Vasoactive Intestinal Polypeptide-Derived Peptide Sequences in Cerebral Blood Vessels of Rats: On the Functional Anatomy of Metabolic Autoregulation. Journal of Cerebral Blood Flow and Metabolism, 1991, 11, 932-938.	2.4	19
48	Vasoactive Intestinal Peptide-Like Immunoreactive Nerve Fibers in the Pineal Gland of the Sheep. Journal of Pineal Research, 1990, 8, 41-47.	3.4	18
49	Neuropeptide Y in the mammalian pineal gland. Microscopy Research and Technique, 1999, 46, 239-256.	1.2	15
50	Neural Adrenergic/Cyclic AMP Regulation of the Immunoglobulin E Receptor α-Subunit Expression in the Mammalian Pinealocyte. Journal of Biological Chemistry, 2007, 282, 32758-32764.	1.6	14
51	The <i>Lhx4</i> homeobox transcript in the rat pineal gland: Adrenergic regulation and impact on transcripts encoding melatoninâ€synthesizing enzymes. Journal of Pineal Research, 2020, 68, e12616.	3.4	14
52	Arcuate nucleus, median eminence, and hypophysial pars tuberalis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 180, 227-251.	1.0	14
53	Presence of oxytocinergic neuronal-like cells in the bovine pineal gland: an immunocytochemical and in situ hybridization study. Journal of Pineal Research, 2001, 31, 273-280.	3.4	13
54	Homeobox Genes and Melatonin Synthesis: Regulatory Roles of the Cone-Rod Homeobox Transcription Factor in the Rodent Pineal Gland. BioMed Research International, 2014, 2014, 1-8.	0.9	13

#	Article	lF	CITATIONS
55	Stimulation of Serotonin-N-Acetyltransferase Activity in the Pineal Gland of the Mongolian Gerbil (Meriones unguiculatus) by Intracerebroventricular Injection of Vasoactive Intestinal Polypeptide. Journal of Pineal Research, 1989, 7, 393-399.	3.4	12
56	A neuroanatomical and physiological study of the non-image forming visual system of the cone-rod homeobox gene (Crx) knock out mouse. Brain Research, 2010, 1343, 54-65.	1.1	12
57	Phosphodiesterases 3 and 5 express activity in the trigeminal ganglion and co-localize with calcitonin gene-related peptide. Cephalalgia, 2014, 34, 503-513.	1.8	11
58	The accessory magnocellular neurosecretory system of the rostral human hypothalamus. Cell and Tissue Research, 2018, 373, 487-498.	1.5	10
59	Expression of vasopressin mRNA in the hypothalamus of individuals with a diagnosis of schizophrenia. Brain and Behavior, 2019, 9, e01355.	1.0	10
60	Circadian regulation and molecular role of the <i>Bsx</i> homeobox gene in the adult pineal gland. Journal of Pineal Research, 2020, 68, e12629.	3.4	10
61	Characterization of the Cholecystokinin and Gastrin Genes from the Bullfrog, Rana catesbeiana: Evolutionary Conservation of Primary and Secondary Sites of Gene Expression. , 0, .		10
62	Presence of a Pineal Nerve (Nervus pinealis) in Fetal Mammals. Progress in Brain Research, 1979, 52, 103-106.	0.9	8
63	Peptidergic cells in the mammalian pineal gland. Morphological indications for a paracrine regulation of the pinealocyte. Biology of the Cell, 1997, 89, 561-567.	0.7	8
64	Vasopressin and oxytocin beyond the pituitary in the human brain. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 180, 7-24.	1.0	8
65	Muscleblindâ€like 2: circadian expression in the mammalian pineal gland is controlled by an adrenergicâ€cAMP mechanism. Journal of Neurochemistry, 2009, 110, 756-764.	2.1	7
66	Proteomics of the photoneuroendocrine circadian system of the brain. Mass Spectrometry Reviews, 2010, 29, 313-325.	2.8	7
67	Developmental and Diurnal Expression of the Synaptosomal-Associated Protein 25 (Snap25) in the Rat Pineal Gland. Neurochemical Research, 2013, 38, 1219-1228.	1.6	6
68	Expression of presynaptic markers in a neurodevelopmental animal model with relevance to schizophrenia. NeuroReport, 2013, 24, 928-933.	0.6	6
69	Diurnal expression of proteins in the retina of the blind coneâ€rod homeobox (<i>Crx</i> ^{<i>â^²/lâ^²</i>}) mouse and the 129/Sv mouse: a proteomic study. Acta Ophthalmologica, 2017, 95, 717-726.	0.6	6
70	Demonstration of nerve fibers containing the C-terminal flanking peptide of neuropeptide Y (CPON) in the pig pineal gland (Sus domesticus): An immunocytochemical study by light and electron microscopy. , 1997, 248, 576-582.		5
71	Somatostatin and somatostatin receptors in the pig pineal gland during postnatal development: An immunocytochemical study. , 2000, 259, 141-149.		5
72	Influence of sympathectomy in humans on the rhythmicity of 6-sulphatoxymelatonin urinary excretion. Molecular and Cellular Endocrinology, 2006, 252, 40-45.	1.6	4

#	Article	IF	CITATIONS
73	Hypothalamic Neurosecretory and Circadian Vasopressinergic Neuronal Systems in the Blind Coneâ€Rod Homeobox Knockout Mouse (<i>Crx</i> ^{â''/â^'}) and the 129sv Wildâ€Type Mouse. Journal of Comparative Neurology, 2013, 521, 4061-4074.	0.9	3
74	Neuropeptide Y in the Adult and Fetal Human Pineal Gland. BioMed Research International, 2014, 2014, 1-7.	0.9	3
75	Photic stimulation of the suprachiasmatic nucleus via the non-visual optic system. A gene expression study in the blind Crx â^'/â^' mouse. Cell and Tissue Research, 2014, 358, 239-248.	1.5	3
76	Comparison of hippocampal volume measurement by autopsy and post-mortem magnetic resonance imaging. Forensic Science, Medicine, and Pathology, 2020, 16, 119-122.	0.6	2
77	An ultrastructural study of the deep pineal gland of the Sprague Dawley rat using transmission and serial block face scanning electron microscopy: cell types, barriers, and innervation. Cell and Tissue Research, 2022, 389, 531-546.	1.5	2
78	The effects of adrenergic agonists on c-fos , jun-B and nitric oxide synthase-like immunoreactivities in cultured rat pinealocytes. Journal of Pineal Research, 2001, 31, 186-192.	3.4	1
79	Immunohistochemical localization of the somatostatin receptor subtype 2 (sst2) in the central nervous system of the golden hamster (Mesocricetus auratus). , 1999, 405, 247.		1
80	Downâ€regulation of the Pineal Response to Adrenergic Stimulation Mediated by cAMP Induction of Phosphodiesterase 4B2. FASEB Journal, 2006, 20, .	0.2	0