Ronald S Flannagan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3958085/publications.pdf

Version: 2024-02-01

38 papers 3,524 citations

279798 23 h-index 35 g-index

41 all docs

41 docs citations

41 times ranked

5341 citing authors

#	Article	IF	CITATIONS
1	Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nature Reviews Microbiology, 2009, 7, 355-366.	28.6	812
2	The Cell Biology of Phagocytosis. Annual Review of Pathology: Mechanisms of Disease, 2012, 7, 61-98.	22.4	791
3	Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. Journal of Cell Biology, 2012, 198, 23-35.	5. 2	187
4	Intracellular replication of <i>Staphylococcus aureus </i> in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination. Cellular Microbiology, 2016, 18, 514-535.	2.1	174
5	Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus. Pathogens, 2015, 4, 826-868.	2.8	151
6	A system for the construction of targeted unmarked gene deletions in the genus $<$ i>Burkholderia $<$ i>Environmental Microbiology, 2008, 10, 1652-1660.	3.8	145
7	A Complete Lipopolysaccharide Inner Core Oligosaccharide Is Required for Resistance of Burkholderia cenocepacia to Antimicrobial Peptides and Bacterial Survival In Vivo. Journal of Bacteriology, 2006, 188, 2073-2080.	2.2	126
8	Dynamic macrophage "probing―is required for the efficient capture of phagocytic targets. Journal of Cell Biology, 2010, 191, 1205-1218.	5. 2	124
9	A Novel Sensor Kinase-Response Regulator Hybrid Controls Biofilm Formation and Type VI Secretion System Activity in <i>Burkholderia cenocepacia</i> Infection and Immunity, 2008, 76, 1979-1991.	2.2	121
10	A Putative Gene Cluster for Aminoarabinose Biosynthesis Is Essential for Burkholderia cenocepacia Viability. Journal of Bacteriology, 2007, 189, 3639-3644.	2.2	101
11	The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis. Molecular Biology of the Cell, 2014, 25, 1511-1522.	2.1	93
12	Burkholderia cenocepacia Requires a Periplasmic HtrA Protease for Growth under Thermal and Osmotic Stress and for Survival In Vivo. Infection and Immunity, 2007, 75, 1679-1689.	2.2	81
13	Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance. BMC Microbiology, 2009, 9, 200.	3.3	72
14	Bdellovibrio exovorus sp. nov., a novel predator of Caulobacter crescentus. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 146-151.	1.7	71
15	Staphylococcus aureus Uses the GraXRS Regulatory System To Sense and Adapt to the Acidified Phagolysosome in Macrophages. MBio, 2018, 9, .	4.1	57
16	Discovery of an antivirulence compound that reverses \hat{l}^2 -lactam resistance in MRSA. Nature Chemical Biology, 2020, 16, 143-149.	8.0	57
17	Stress-induced inactivation of the Staphylococcus aureus purine biosynthesis repressor leads to hypervirulence. Nature Communications, 2019, 10, 775.	12.8	54
18	Burkholderia cenocepacia requires RpoE for growth under stress conditions and delay of phagolysosomal fusion in macrophages. Microbiology (United Kingdom), 2008, 154, 643-653.	1.8	36

#	Article	IF	CITATIONS
19	A twoâ€tier model of polymyxin B resistance in <i>Burkholderia cenocepacia</i> . Environmental Microbiology Reports, 2011, 3, 278-285.	2.4	36
20	Burkholderia cenocepacia disrupts host cell actin cytoskeleton by inactivating Rac and Cdc42. Cellular Microbiology, 2012, 14, 239-254.	2.1	32
21	Downregulation of the motA gene delays the escape of the obligate predator Bdellovibrio bacteriovorus 109J from bdelloplasts of bacterial prey cells. Microbiology (United Kingdom), 2004, 150, 649-656.	1.8	28
22	Coagulase-negative staphylococci release a purine analog that inhibits Staphylococcus aureus virulence. Nature Communications, 2021, 12, 1887.	12.8	27
23	<i>De Novo</i> Purine Biosynthesis Is Required for Intracellular Growth of Staphylococcus aureus and for the Hypervirulence Phenotype of a <i>purR</i> Mutant. Infection and Immunity, 2020, 88, .	2.2	24
24	A minor catalase/peroxidase from Burkholderia cenocepacia is required for normal aconitase activity. Microbiology (United Kingdom), 2005, 151, 1975-1985.	1.8	23
25	A Fluorescence Based-Proliferation Assay for the Identification of Replicating Bacteria Within Host Cells. Frontiers in Microbiology, 2018, 9, 3084.	3.5	18
26	Superantigens promote <i>Staphylococcus aureus</i> bloodstream infection by eliciting pathogenic interferon-gamma production. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	17
27	Rapid removal of phagosomal ferroportin in macrophages contributes to nutritional immunity. Blood Advances, 2021, 5, 459-474.	5.2	13
28	Macrophageâ€driven nutrient delivery to phagosomal <i>Staphylococcus aureus</i> supports bacterial growth. EMBO Reports, 2020, 21, e50348.	4.5	12
29	Heme-Dependent Siderophore Utilization Promotes Iron-Restricted Growth of the Staphylococcus aureus <i>hemB</i> Small-Colony Variant. Journal of Bacteriology, 2021, 203, e0045821.	2.2	10
30	The surreptitious survival of the emerging pathogen <i>Staphylococcus lugdunensis</i> within macrophages as an immune evasion strategy. Cellular Microbiology, 2018, 20, e12869.	2.1	9
31	The Application of Fluorescent Probes for the Analysis of Lipid Dynamics During Phagocytosis. Methods in Molecular Biology, 2010, 591, 121-134.	0.9	8
32	InÂvivo growth of Staphylococcus lugdunensis is facilitated by the concerted function of heme and non-heme iron acquisition mechanisms. Journal of Biological Chemistry, 2022, 298, 101823.	3.4	6
33	Editorial: Fly fishing with RNAi catches novel effectors of phagocytosis. Journal of Leukocyte Biology, 2011, 89, 643-645.	3.3	3
34	Mutations in a Membrane Permease or hpt Lead to 6-Thioguanine Resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0076021.	3.2	3
35	Burkholderia cenocepaciainfection. Cell Adhesion and Migration, 2012, 6, 297-301.	2.7	2
36	Signaling of Phagocytosis. , 2016, , 83-96.		0

#	Article	IF	CITATIONS
37	Dynamic macrophage "probing―is required for the efficient capture of phagocytic targets. Journal of Experimental Medicine, 2010, 207, i37-i37.	8.5	0
38	The Antimicrobial Functions of Macrophages. , 2014, , 111-129.		0