
Bin Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3957987/publications.pdf Version: 2024-02-01

RIN CAL

#	Article	IF	CITATIONS
1	Engineering of aerogelâ€based electrocatalysts for oxygen evolution reaction. Electrochemical Science Advances, 2022, 2, e2100113.	2.8	1
2	Tunable metal hydroxide–organic frameworks for catalysing oxygen evolution. Nature Materials, 2022, 21, 673-680.	27.5	123
3	Frontispiece: Peptoidâ€Directed Formation of Fiveâ€Fold Twinned Au Nanostars through Particle Attachment and Facet Stabilization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	1
4	Peptoidâ€Directed Formation of Fiveâ€Fold Twinned Au Nanostars through Particle Attachment and Facet Stabilization. Angewandte Chemie, 2022, 134, .	2.0	2
5	Peptoidâ€Directed Formation of Fiveâ€Fold Twinned Au Nanostars through Particle Attachment and Facet Stabilization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
6	Self-Supported Three-Dimensional Quantum Dot Aerogels as a Promising Photocatalyst for CO ₂ Reduction. Chemistry of Materials, 2022, 34, 2687-2695.	6.7	12
7	Frontispiz: Peptoidâ€Directed Formation of Fiveâ€Fold Twinned Au Nanostars through Particle Attachment and Facet Stabilization. Angewandte Chemie, 2022, 134, .	2.0	0
8	Molecular Driving Force for Facet Selectivity of Sequence-Defined Amphiphilic Peptoids at Au–Water Interfaces. Journal of Physical Chemistry B, 2022, 126, 5117-5126.	2.6	6
9	Programming Amphiphilic Peptoid Oligomers for Hierarchical Assembly and Inorganic Crystallization. Accounts of Chemical Research, 2021, 54, 81-91.	15.6	34
10	Nanoparticle-Mediated Assembly of Peptoid Nanosheets Functionalized with Solid-Binding Proteins: Designing Heterostructures for Hierarchy. Nano Letters, 2021, 21, 1636-1642.	9.1	31
11	Hierarchical Nanomaterials Assembled from Peptoids and Other Sequence-Defined Synthetic Polymers. Chemical Reviews, 2021, 121, 14031-14087.	47.7	61
12	Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds. Nature Catalysis, 2021, 4, 753-762.	34.4	122
13	Peptoid-directed assembly of CdSe nanoparticles. Nanoscale, 2021, 13, 1273-1282.	5.6	18
14	Synthesis of unsupported two-dimensional molybdenum carbide nanosheets for hydrogen evolution. Materials Letters, 2020, 261, 126987.	2.6	22
15	An improved separation scheme for Sr through fluoride coprecipitation combined with a cation-exchange resin from geological samples with high Rb/Sr ratios for high-precision determination of Sr isotope ratios. Journal of Analytical Atomic Spectrometry, 2020, 35, 953-960.	3.0	19
16	Peptoid-based hierarchically-structured biomimetic nanomaterials: Synthesis, characterization and applications. Science China Materials, 2020, 63, 1099-1112.	6.3	10
17	Selective selenization of mixed-linker Ni-MOFs: NiSe2@NC core-shell nano-octahedrons with tunable interfacial electronic structure for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 272, 118976.	20.2	111
18	Solid-State Gelation for Nanostructured Perovskite Oxide Aerogels. Chemistry of Materials, 2019, 31, 9422-9429.	6.7	17

Βιν ζαι

#	Article	IF	CITATIONS
19	Ligand-Exchange-Mediated Fabrication of Gold Aerogels Containing Different Au(I) Content with Peroxidase-like Behavior. Chemistry of Materials, 2019, 31, 10094-10099.	6.7	26
20	2020 roadmap on pore materials for energy and environmental applications. Chinese Chemical Letters, 2019, 30, 2110-2122.	9.0	75
21	Promoting Electrocatalysis upon Aerogels. Advanced Materials, 2019, 31, e1804881.	21.0	146
22	Kernâ€Schaleâ€Strukturierung rein metallischer Aerogele für eine hocheffiziente Nutzung von Platin für die Sauerstoffreduktion. Angewandte Chemie, 2018, 130, 3014-3018.	2.0	7
23	Core–Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2018, 57, 2963-2966.	13.8	154
24	Emerging Hierarchical Aerogels: Selfâ€Assembly of Metal and Semiconductor Nanocrystals. Advanced Materials, 2018, 30, e1707518.	21.0	104
25	Multimetallic Hierarchical Aerogels: Shape Engineering of the Building Blocks for Efficient Electrocatalysis. Advanced Materials, 2017, 29, 1605254.	21.0	98
26	Hybrid N-Butylamine-Based Ligands for Switching the Colloidal Solubility and Regimentation of Inorganic-Capped Nanocrystals. ACS Nano, 2017, 11, 1559-1571.	14.6	49
27	Nanostructuring Noble Metals as Unsupported Electrocatalysts for Polymer Electrolyte Fuel Cells. Advanced Energy Materials, 2017, 7, 1700548.	19.5	76
28	Microtubular Fuel Cell with Ultrahigh Power Output per Footprint. Advanced Materials, 2017, 29, 1607046.	21.0	18
29	Precise Engineering of Nanocrystal Shells via Colloidal Atomic Layer Deposition. Chemistry of Materials, 2017, 29, 8111-8118.	6.7	21
30	Quantumâ€Đotâ€inâ€Polymer Composites via Advanced Surface Engineering. Small Methods, 2017, 1, 1700189.	. 8.6	29
31	3D Assembly of Allâ€Inorganic Colloidal Nanocrystals into Gels and Aerogels. Angewandte Chemie - International Edition, 2016, 55, 6334-6338.	13.8	75
32	3Dâ€Anordnung anorganischer kolloidaler Nanokristalle zu Gelen und Aerogelen. Angewandte Chemie, 2016, 128, 6442-6446.	2.0	9
33	Functionâ€Led Design of Aerogels: Selfâ€Assembly of Alloyed PdNi Hollow Nanospheres for Efficient Electrocatalysis. Angewandte Chemie - International Edition, 2015, 54, 13101-13105.	13.8	180
34	Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (0 4 0) with enhancing photoelectrochemical and photocatalytic performance. Applied Catalysis B: Environmental, 2015, 170-171, 206-214.	20.2	325
35	Efficiently photocatalytic reduction of carcinogenic contaminant Cr (VI) upon robust AgCl:Ag hollow nanocrystals. Applied Catalysis B: Environmental, 2015, 164, 344-351.	20.2	89
36	A distinctive red Ag/AgCl photocatalyst with efficient photocatalytic oxidative and reductive active activities. Journal of Materials Chemistry A, 2014, 2, 5280-5286.	10.3	78

Βιν ζαι

#	Article	IF	CITATIONS
37	Ce-/S-codoped TiO ₂ /Sulfonated graphene for photocatalytic degradation of organic dyes. Journal of Materials Chemistry A, 2014, 2, 13565-13570.	10.3	30
38	High performance Pd nanocrystals supported on SnO ₂ -decorated graphene for aromatic nitro compound reduction. Journal of Materials Chemistry A, 2014, 2, 3461-3467.	10.3	45
39	Ternary alloyed AgClxBr1â^'x nanocrystals: facile modulation of electronic structures toward advanced photocatalytic performance. Nanoscale, 2013, 5, 10989.	5.6	27
40	Advanced visible-light-driven photocatalyst upon the incorporation of sulfonated graphene. Nanoscale, 2013, 5, 1910.	5.6	35
41	Effective Solid Contact for Ion-Selective Electrodes: Tetrakis(4-chlorophenyl)borate (TB [–]) Anions Doped Nanocluster Films. Analytical Chemistry, 2012, 84, 3480-3483.	6.5	62