Armin W Lorenz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3957782/publications.pdf

Version: 2024-02-01

		159585	243625
55	2,073	30	44
papers	citations	h-index	g-index
FF	FF		1041
55	55	55	1941
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Decline in niche specialization and trait \hat{l}^2 -diversity in benthic invertebrate communities of Central European low-mountain streams over 25 Âyears. Science of the Total Environment, 2022, 810, 151770.	8.0	3
2	Generalist parasites persist in degraded environments: a lesson learned from microsporidian diversity in amphipods. Parasitology, 2022, 149, 973-982.	1.5	7
3	Woody buffer effects on water temperature: The role of spatial configuration and daily temperature fluctuations. Hydrological Processes, 2021, 35, e14008.	2.6	13
4	Continuous riverine biodiversity changes in a 10â€yearsâ€postâ€restorationâ€study—Impacts and pitfalls. River Research and Applications, 2021, 37, 270-282.	1.7	12
5	The interplay of nutrients, dissolved inorganic carbon and algae in determining macrophyte occurrences in rivers. Science of the Total Environment, 2021, 781, 146728.	8.0	13
6	Active reintroduction of benthic invertebrates to increase stream biodiversity. Limnologica, 2020, 80, 125726.	1.5	7
7	The effect of lateral connectedness on the taxonomic and functional structure of fish communities in a lowland river floodplain. Science of the Total Environment, 2020, 719, 137169.	8.0	7
8	Diverging response patterns of terrestrial and aquatic species to hydromorphological restoration. Conservation Biology, 2019, 33, 132-141.	4.7	18
9	Reintroduction of freshwater macroinvertebrates: challenges and opportunities. Biological Reviews, 2019, 94, 368-387.	10.4	43
10	Effect of river restoration on life-history strategies in fish communities. Science of the Total Environment, 2019, 663, 486-495.	8.0	14
11	Development and validation of a macroinvertebrate-based biomonitoring tool to assess fine sediment impact in small mountain streams. Science of the Total Environment, 2019, 652, 1290-1301.	8.0	43
12	Moderate warming over the past 25†years has already reorganized stream invertebrate communities. Science of the Total Environment, 2019, 658, 1531-1538.	8.0	53
13	Revisiting restored river reaches – Assessing change of aquatic and riparian communities after five years. Science of the Total Environment, 2018, 613-614, 1185-1195.	8.0	45
14	How to facilitate freshwater macroinvertebrate reintroduction?. Limnologica, 2018, 69, 24-27.	1.5	7
15	Riparian plant species preferences indicate diversification of site conditions after river restoration. Ecohydrology, 2017, 10, e1852.	2.4	14
16	Mechanistic modelling for predicting the effects of restoration, invasion and pollution on benthic macroinvertebrate communities in rivers. Freshwater Biology, 2017, 62, 1083-1093.	2.4	5
17	Insights into species diversity of the genus Hydropsyche Pictet, 1834 (Hydropsychidae, Trichoptera) from the Lake Kinneret catchment (Israel). Aquatic Insects, 2017, 38, 125-140.	0.9	1
18	Integrating and extending ecological river assessment: Concept and test with two restoration projects. Ecological Indicators, 2017, 72, 131-141.	6.3	35

#	Article	IF	CITATIONS
19	Hydromorphological restoration stimulates river ecosystem metabolism. Biogeosciences, 2017, 14, 1989-2002.	3.3	22
20	Time is no healer: increasing restoration age does not lead to improved benthic invertebrate communities in restored river reaches. Science of the Total Environment, 2016, 557-558, 722-732.	8.0	52
21	Start at zero: succession of benthic invertebrate assemblages in restored former sewage channels. Aquatic Sciences, 2016, 78, 683-694.	1.5	16
22	Response of fish assemblages to hydromorphological restoration in central and northern European rivers. Hydrobiologia, 2016, 769, 67-78.	2.0	44
23	River restoration and the trophic structure of benthic invertebrate communities across 16 European restoration projects. Hydrobiologia, 2016, 769, 105-120.	2.0	26
24	The response of hydrophyte growth forms and plant strategies to river restoration. Hydrobiologia, 2016, 769, 41-54.	2.0	19
25	Fish community responses and the temporal dynamics of recovery following river habitat restorations in Europe. Freshwater Science, 2015, 34, 975-990.	1.8	28
26	Contrasting the roles of section length and instream habitat enhancement for river restoration success: a field study of 20 European restoration projects. Journal of Applied Ecology, 2015, 52, 1518-1527.	4.0	64
27	Bundles of stream restoration measures and their effects on fish communities. Limnologica, 2015, 55, 1-8.	1.5	10
28	A multi-trait approach for the identification and protection of European freshwater species that are potentially vulnerable to the impacts of climate change. Ecological Indicators, 2015, 50, 150-160.	6.3	37
29	Recolonisation patterns of benthic invertebrates: a field investigation of restored former sewage channels. Freshwater Biology, 2014, 59, 1932-1944.	2.4	32
30	Mountain river restoration measures and their success(ion): Effects on river morphology, local species pool, and functional composition of three organism groups. Ecological Indicators, 2014, 38, 243-255.	6.3	42
31	The Importance of the Regional Species Pool, Ecological Species Traits and Local Habitat Conditions for the Colonization of Restored River Reaches by Fish. PLoS ONE, 2014, 9, e84741.	2.5	65
32	Do adult and YOY fish benefit from river restoration measures?. Ecological Engineering, 2013, 61, 174-181.	3.6	56
33	Substratum associations of benthic invertebrates in lowland and mountain streams. Ecological Indicators, 2013, 30, 178-189.	6.3	42
34	Upstream river morphology and riparian land use overrule local restoration effects on ecological status assessment. Hydrobiologia, 2013, 704, 489-501.	2.0	102
35	Small and impoverished regional species pools constrain colonisation of restored river reaches by fishes. Freshwater Biology, 2013, 58, 664-674.	2.4	49
36	A comparison of habitat diversity and interannual habitat dynamics in actively and passively restored mountain rivers of Germany. Hydrobiologia, 2013, 712, 89-104.	2.0	12

#	Article	lF	Citations
37	Macrophytes respond to reachâ€scale river restorations. Journal of Applied Ecology, 2012, 49, 202-212.	4.0	67
38	Dispersal as a limiting factor in the colonization of restored mountain streams by plants and macroinvertebrates. Journal of Applied Ecology, 2011, 48, 1241-1250.	4.0	100
39	Hydromorphological restoration of running waters: effects on benthic invertebrate assemblages. Freshwater Biology, 2011, 56, 1689-1702.	2.4	67
40	A comparative analysis of restoration measures and their effects on hydromorphology and benthic invertebrates in 26 central and southern European rivers. Journal of Applied Ecology, 2010, 47, 671-680.	4.0	128
41	Restoration effort, habitat mosaics, and macroinvertebrates — does channel form determine community composition?. Aquatic Conservation: Marine and Freshwater Ecosystems, 2009, 19, 157-169.	2.0	39
42	Re-Meandering German Lowland Streams: Qualitative and Quantitative Effects of Restoration Measures on Hydromorphology and Macroinvertebrates. Environmental Management, 2009, 44, 745-754.	2.7	76
43	Effects of reâ€braiding measures on hydromorphology, floodplain vegetation, ground beetles and benthic invertebrates in mountain rivers. Journal of Applied Ecology, 2009, 46, 406-416.	4.0	87
44	Substrate-specific macroinvertebrate diversity patterns following stream restoration. Aquatic Sciences, 2008, 70, 292-303.	1.5	52
45	Hydromorphological parameters indicating differences between single―and multipleâ€ehannel mountain rivers in Germany, in relation to their modification and recovery. Aquatic Conservation: Marine and Freshwater Ecosystems, 2008, 18, 1200-1216.	2.0	39
46	Sample coherence – a field study approach to assess similarity of macroinvertebrate samples. Hydrobiologia, 2006, 566, 461-476.	2.0	14
47	Effects of sampling and sub-sampling variation using the STAR-AQEM sampling protocol on the precision of macroinvertebrate metrics. Hydrobiologia, 2006, 566, 441-459.	2.0	45
48	The AQEM/STAR taxalist – a pan-European macro-invertebrate ecological database and taxa inventory. Hydrobiologia, 2006, 566, 325-342.	2.0	49
49	The AQEM/STAR taxalist — a pan-European macro-invertebrate ecological database and taxa inventory. , 2006, , 325-342.		6
50	Sample coherence — a field study approach to assess similarity of macroinvertebrate samples. , 2006, , 461-476.		1
51	Effects of sampling and sub-sampling variation using the STAR-AQEM sampling protocol on the precision of macroinvertebrate metrics., 2006, , 441-459.		7
52	†Electronic Subsampling' of Macrobenthic Samples: How Many Individuals are Needed for a Valid Assessment Result?. , 2004, , 299-312.		7
53	A new method for assessing the impact of hydromorphological degradation on the macroinvertebrate fauna of five German stream types. Hydrobiologia, 2004, 516, 107-127.	2.0	149
54	`Electronic subsampling' of macrobenthic samples: how many individuals are needed for a valid assessment result?. Hydrobiologia, 2004, 516, 299-312.	2.0	36

ARMIN W LORENZ

#	Article	lF	CITATIONS
55	Typology of streams in Germany based on benthic invertebrates: Ecoregions, zonation, geology and substrate. Limnologica, 2004, 34, 379-389.	1.5	46