Abraham Pinter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3957628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dichotomy between the humoral and cellular responses elicited by mRNA and adenoviral vector vaccines against SARS-CoV-2. BMC Medicine, 2022, 20, 32.	2.3	7
2	A pandemic-enabled comparison of discovery platforms demonstrates a nail^ve antibody library can match the best immune-sourced antibodies. Nature Communications, 2022, 13, 462.	5.8	17
3	SARS-CoV-2 Seroprevalence and Symptom Onset in Culturally Linked Orthodox Jewish Communities Across Multiple Regions in the United States. JAMA Network Open, 2021, 4, e212816.	2.8	28
4	Human Immunodeficiency Viruses Pseudotyped with SARS-CoV-2 Spike Proteins Infect a Broad Spectrum of Human Cell Lines through Multiple Entry Mechanisms. Viruses, 2021, 13, 953.	1.5	17
5	Human Defensins Inhibit SARS-CoV-2 Infection by Blocking Viral Entry. Viruses, 2021, 13, 1246.	1.5	35
6	Phosphatidylserine-Targeting Monoclonal Antibodies Exhibit Distinct Biochemical and Cellular Effects on Anti-CD3/CD28–Stimulated T Cell IFN-γ and TNF-α Production. Journal of Immunology, 2021, 207, 436-448.	0.4	1
7	Field evaluation of a prototype tuberculosis lipoarabinomannan lateral flow assay on HIV-positive and HIV-negative patients. PLoS ONE, 2021, 16, e0254156.	1.1	3
8	CAR-NK Cells Effectively Target SARS-CoV-2-Spike-Expressing Cell Lines In Vitro. Frontiers in Immunology, 2021, 12, 652223.	2.2	27
9	Determinants and Dynamics of SARS-CoV-2 Infection in a Diverse Population: 6-Month Evaluation of a Prospective Cohort Study. Journal of Infectious Diseases, 2021, 224, 1345-1356.	1.9	22
10	Association of Varying Clinical Manifestations and Positive Anti–SARS-CoV-2 IgG Antibodies: A Cross-Sectional Observational Study. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3331-3338.e2.	2.0	9
11	Highly versatile antibody binding assay for the detection of SARS-CoV-2 infection and vaccination. Journal of Immunological Methods, 2021, 499, 113165.	0.6	6
12	Prevalence and Correlates of SARS CoV-2 Among a Community-Based Sample Recruited Using Randomized Venue-Based Sampling. Essex County, NJ, 2020. Journal of Racial and Ethnic Health Disparities, 2021, , 1.	1.8	0
13	Robust IgM responses following intravenous vaccination with Bacille Calmette–Guérin associate with prevention of Mycobacterium tuberculosis infection in macaques. Nature Immunology, 2021, 22, 1515-1523.	7.0	55
14	Structure and Fc-Effector Function of Rhesusized Variants of Human Anti-HIV-1 lgG1s. Frontiers in Immunology, 2021, 12, 787603.	2.2	1
15	Lipoarabinomannan antigenic epitope differences in tuberculosis disease subtypes. Scientific Reports, 2020, 10, 13944.	1.6	8
16	Diagnostic accuracy of 3 urine lipoarabinomannan tuberculosis assays in HIV-negative outpatients. Journal of Clinical Investigation, 2020, 130, 5756-5764.	3.9	53
17	Novel lipoarabinomannan point-of-care tuberculosis test for people with HIV: a diagnostic accuracy study. Lancet Infectious Diseases, The, 2019, 19, 852-861.	4.6	159
18	Sensitive electrochemiluminescence (ECL) immunoassays for detecting lipoarabinomannan (LAM) and FSAT-6 in urine and serum from tuberculosis patients. PLoS ONE, 2019, 14, e0215443	1.1	51

Abraham Pinter

#	Article	IF	CITATIONS
19	Surfaceâ€enhanced resonance Raman scattering for the sensitive detection of a tuberculosis biomarker in human serum. Journal of Raman Spectroscopy, 2019, 50, 15-25.	1.2	19
20	HIV-1 Envelope Glycoproteins from Diverse Clades Differentiate Antibody Responses and Durability among Vaccinees. Journal of Virology, 2018, 92, .	1.5	46
21	Characterization of the Antigenic Heterogeneity of Lipoarabinomannan, the Major Surface Glycolipid of <i>Mycobacterium tuberculosis</i> , and Complexity of Antibody Specificities toward This Antigen. Journal of Immunology, 2018, 200, 3053-3066.	0.4	58
22	Identification of Novel Structural Determinants in MW965 Env That Regulate the Neutralization Phenotype and Conformational Masking Potential of Primary HIV-1 Isolates. Journal of Virology, 2018, 92, .	1.5	8
23	A Novel Sensitive Immunoassay Targeting the 5-Methylthio- <scp>d</scp> -Xylofuranose–Lipoarabinomannan Epitope Meets the WHO's Performance Target for Tuberculosis Diagnosis. Journal of Clinical Microbiology, 2018, 56, .	1.8	95
24	Detection of lipoarabinomannan in urine and serum of HIV-positive and HIV-negative TB suspects using an improved capture-enzyme linked immuno absorbent assay and gas chromatography/mass spectrometry. Tuberculosis, 2018, 111, 178-187.	0.8	48
25	Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nature Communications, 2017, 8, 15711.	5.8	137
26	Differences in serum IgA responses to HIV-1 gp41 in elite controllers compared to viral suppressors on highly active antiretroviral therapy. PLoS ONE, 2017, 12, e0180245.	1.1	20
27	V1V2-specific complement activating serum IgG as a correlate of reduced HIV-1 infection risk in RV144. PLoS ONE, 2017, 12, e0180720.	1.1	55
28	Effect of Glycosylation on an Immunodominant Region in the V1V2 Variable Domain of the HIV-1 Envelope gp120 Protein. PLoS Computational Biology, 2016, 12, e1005094.	1.5	17
29	DNA and Protein Co-Immunization Improves the Magnitude and Longevity of Humoral Immune Responses in Macaques. PLoS ONE, 2014, 9, e91550.	1.1	42
30	Identification of Key Determinants for the Unusual Neutralization Sensitivity of the MW965.26 Env. AIDS Research and Human Retroviruses, 2014, 30, A209-A209.	0.5	0
31	Specific sequences commonly found in the V3 domain of HIV-1 subtype C isolates affect the overall conformation of native Env and induce a neutralization-resistant phenotype independent of V1/V2 masking. Virology, 2014, 448, 363-374.	1.1	8
32	Vaccine-Induced IgG Antibodies to V1V2 Regions of Multiple HIV-1 Subtypes Correlate with Decreased Risk of HIV-1 Infection. PLoS ONE, 2014, 9, e87572.	1.1	248
33	Computational Prediction of Neutralization Epitopes Targeted by Human Anti-V3 HIV Monoclonal Antibodies. PLoS ONE, 2014, 9, e89987.	1.1	8
34	Vaccination with Vaxfectin [®] adjuvanted SIV DNA induces long-lasting humoral immune responses able to reduce SIVmac251 Viremia. Human Vaccines and Immunotherapeutics, 2013, 9, 2069-2080.	1.4	12
35	Potent and Broad Neutralization of HIV-1 Subtype C by Plasma Antibodies Targeting a Quaternary Epitope Including Residues in the V2 Loop. Journal of Virology, 2011, 85, 3128-3141.	1.5	151
36	Characterization of Structural Features and Diversity of Variable-Region Determinants of Related Quaternary Epitopes Recognized by Human and Rhesus Macaque Monoclonal Antibodies Possessing Unusually Potent Neutralizing Activities. Journal of Virology, 2011, 85, 10730-10740.	1.5	18

Abraham Pinter

#	Article	IF	CITATIONS
37	Subtype-specific conservation of isoleucine 309 in the envelope V3 domain is linked to immune evasion in subtype C HIV-1 infection. Virology, 2010, 404, 59-70.	1.1	30
38	Structure-guided design and immunological characterization of immunogens presenting the HIV-1 gp120 V3 loop on a CTB scaffold. Virology, 2010, 405, 513-523.	1.1	42
39	Human Immunodeficiency Virus Type 2 (HIV-2)/HIV-1 Envelope Chimeras Detect High Titers of Broadly Reactive HIV-1 V3-Specific Antibodies in Human Plasma. Journal of Virology, 2009, 83, 1240-1259.	1.5	67
40	High titer HIV-1 V3-specific antibodies with broad reactivity but low neutralizing potency in acute infection and following vaccination. Virology, 2009, 387, 414-426.	1.1	86
41	Preferential use of the VH5-51 gene segment by the human immune response to code for antibodies against the V3 domain of HIV-1. Molecular Immunology, 2009, 46, 917-926.	1.0	107
42	Focusing the immune response on the V3 loop, a neutralizing epitope of the HIV-1 gp120 envelope. Virology, 2008, 372, 233-246.	1.1	53
43	Roles of HIV-1 Env Variable Regions in Viral Neutralization and Vaccine Development. Current HIV Research, 2007, 5, 542-553.	0.2	33
44	Cross-Clade Neutralizing Activity of Human Anti-V3 Monoclonal Antibodies Derived from the Cells of Individuals Infected with Non-B Clades of Human Immunodeficiency Virus Type 1. Journal of Virology, 2006, 80, 6865-6872.	1.5	113
45	Factors Determining the Breadth and Potency of Neutralization by V3-Specific Human Monoclonal Antibodies Derived from Subjects Infected with Clade A or Clade B Strains of Human Immunodeficiency Virus Type 1. Journal of Virology, 2006, 80, 7127-7135.	1.5	83
46	Antibodies That Are Cross-Reactive for Human Immunodeficiency Virus Type 1 Clade A and Clade B V3 Domains Are Common in Patient Sera from Cameroon, but Their Neutralization Activity Is Usually Restricted by Epitope Masking. Journal of Virology, 2005, 79, 780-790.	1.5	82
47	The C108g Epitope in the V2 Domain of gp120 Functions as a Potent Neutralization Target When Introduced into Envelope Proteins Derived from Human Immunodeficiency Virus Type 1 Primary Isolates. Journal of Virology, 2005, 79, 6909-6917.	1.5	37
48	The V3 Loop Is Accessible on the Surface of Most Human Immunodeficiency Virus Type 1 Primary Isolates and Serves as a Neutralization Epitope. Journal of Virology, 2004, 78, 2394-2404.	1.5	111
49	The V1/V2 Domain of gp120 Is a Global Regulator of the Sensitivity of Primary Human Immunodeficiency Virus Type 1 Isolates to Neutralization by Antibodies Commonly Induced upon Infection. Journal of Virology, 2004, 78, 5205-5215.	1.5	236
50	Efficient Isolation of Novel Human Monoclonal Antibodies with Neutralizing Activity Against HIV-1 from Transgenic Mice Expressing Human Ig Loci. Journal of Immunology, 2002, 169, 595-605.	0.4	61
51	Human Monoclonal Antibodies Specific for Conformation-Sensitive Epitopes of V3 Neutralize Human Immunodeficiency Virus Type 1 Primary Isolates from Various Clades. Journal of Virology, 2002, 76, 9035-9045.	1.5	172
52	V3-Specific Polyclonal Antibodies Affinity Purified from Sera of Infected Humans Effectively Neutralize Primary Isolates of Human Immunodeficiency Virus Type 1. AIDS Research and Human Retroviruses, 2001, 17, 1737-1748.	0.5	55
53	A Potent, Neutralizing Human Monoclonal Antibody against a Unique Epitope Overlapping the CD4-Binding Site of HIV-1 gp120 That Is Broadly Conserved across North American and African Virus Isolates. AIDS Research and Human Retroviruses, 1993, 9, 985-996.	0.5	45