
JérÃ'me Coste

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3957508/publications.pdf Version: 2024-02-01

ΙΔΩΡΔ΄ΜΕ COSTE

#	Article	IF	CITATIONS
1	Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy. Translational Psychiatry, 2011, 1, e5-e5.	4.8	74
2	Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence. Brain Stimulation, 2012, 5, 625-633.	1.6	66
3	Brain mapping in stereotactic surgery: A brief overview from the probabilistic targeting to the patient-based anatomic mapping. NeuroImage, 2007, 37, S109-S115.	4.2	54
4	Contact position analysis of deep brain stimulation electrodes on post-operative CT images. Acta Neurochirurgica, 2009, 151, 823-829.	1.7	51
5	Deep brain stimulation in five patients with severe disorders of consciousness. Annals of Clinical and Translational Neurology, 2018, 5, 1372-1384.	3.7	43
6	A Role For Wind-Up in Trigeminal Sensory Processing: Intensity Coding of Nociceptive Stimuli in the Rat. Cephalalgia, 2008, 28, 631-639.	3.9	40
7	MRI anatomical mapping and direct stereotactic targeting in the subthalamic region: functional and anatomical correspondence in Parkinson's disease. International Journal of Computer Assisted Radiology and Surgery, 2007, 2, 75-85.	2.8	24
8	Anatomical brain structures normalization for deep brain stimulation in movement disorders. NeuroImage: Clinical, 2020, 27, 102271.	2.7	23
9	Electrical modulation of neuronal networks in brain-injured patients with disorders of consciousness: A systematic review. Annales Francaises D'Anesthesie Et De Reanimation, 2014, 33, 88-97.	1.4	21
10	Dorsal horn NK1-expressing neurons control windup of downstream trigeminal nociceptive neurons. Pain, 2008, 137, 340-351.	4.2	20
11	Timeâ€course of myelination and atrophy on cerebral imaging in 35 patients with <i><scp>PLP</scp>1</i> â€related disorders. Developmental Medicine and Child Neurology, 2016, 58, 706-713.	2.1	20
12	Subthalamic Nucleus Location: Relationships between Stereotactic AC-PC-Based Diagrams and MRI Anatomy-Based Contours. Stereotactic and Functional Neurosurgery, 2009, 87, 337-347.	1.5	17
13	Patient-Specific Electric Field Simulations and Acceleration Measurements for Objective Analysis of Intraoperative Stimulation Tests in the Thalamus. Frontiers in Human Neuroscience, 2016, 10, 577.	2.0	17
14	Intraoperative acceleration measurements to quantify improvement in tremor during deep brain stimulation surgery. Medical and Biological Engineering and Computing, 2017, 55, 845-858.	2.8	15
15	New electrophysiological mapping combined with MRI in parkinsonian's subthalamic region. European Journal of Neuroscience, 2009, 29, 1627-1633.	2.6	14
16	Personalized mapping of the deep brain with a white matter attenuated inversion recovery (WAIR) sequence at 1.5-tesla: Experience based on a series of 156Âpatients. Neurochirurgie, 2016, 62, 183-189.	1.2	12
17	Bidirectional modulation of windup by NMDA receptors in the rat spinal trigeminal nucleus. European Journal of Neuroscience, 2004, 19, 2009-2016.	2.6	11
18	Anatomical predictors of cognitive decline after subthalamic stimulation in Parkinson's disease. Brain Structure and Function, 2018, 223, 3063-3072.	2.3	11

JéRôME COSTE

#	Article	lF	CITATIONS
19	A novel assistive method for rigidity evaluation during deep brain stimulation surgery using acceleration sensors. Journal of Neurosurgery, 2017, 127, 602-612.	1.6	10
20	MRI Atlas of the Human Deep Brain. Frontiers in Neurology, 2019, 10, 851.	2.4	8
21	Disrupted Pallido-Thalamo-Cortical Functional Connectivity in Chronic Disorders of Consciousness. Brain Sciences, 2021, 11, 356.	2.3	7
22	Pulse generator battery life in deep brain stimulation: out with the old… in with the less durable?. Acta Neurochirurgica, 2019, 161, 2043-2046.	1.7	6
23	Stimulation maps: visualization of results of quantitative intraoperative testing for deep brain stimulation surgery. Medical and Biological Engineering and Computing, 2020, 58, 771-784.	2.8	6
24	Neural correlates of consciousness and related disorders: From phenotypic descriptors of behavioral and relative consciousness to cortico-subcortical circuitry. Neurochirurgie, 2022, 68, 212-222.	1.2	6
25	Early Deformation of Deep Brain Stimulation Electrodes Following Surgical Implantation: Intracranial, Brain, and Electrode Mechanics. Frontiers in Bioengineering and Biotechnology, 2021, 9, 657875.	4.1	6
26	Postoperative control in deep brain stimulation of the subthalamic region: the contact membership concept. International Journal of Computer Assisted Radiology and Surgery, 2008, 3, 69-77.	2.8	5
27	Brain Diffusion Imaging and Tractography to Distinguish Clinical Severity of Human <i>PLP1</i> -Related Disorders. Developmental Neuroscience, 2018, 40, 301-311.	2.0	5
28	NO Synthesis, Unlike Respiration, Influences Intracellular Oxygen Tension. Biochemical and Biophysical Research Communications, 2002, 290, 97-104.	2.1	3
29	A method to quantitatively evaluate changes in tremor during deep brain stimulation surgery. , 2013, , .		3
30	Subthalamus stimulation in Parkinson disease: Accounting for the bilaterality of contacts. , 2016, 7, 837.		3
31	A Tool for Topographic Analysis of Electrode Contacts in Human Cortical Stimulation. , 2007, , .		2
32	Using acceleration sensors to quantify symptoms during deep brain stimulation surgery. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.8	2
33	Intraoperative optical flow based tremor evaluation - a feasibility study. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.8	1
34	Use of quantitative tremor evaluation to enhance target selection during deep brain stimulation surgery for essential tremor. Current Directions in Biomedical Engineering, 2015, 1, 488-492.	0.4	1
35	Analysis of adverse effects of stimulation during DBS surgery by patient-specific FEM simulations. , 2018, 2018, 2222-2225.		1
36	Neural correlates of rehabilitation program with robot-assisted intensive therapy in one case of Holmes tremor. Annals of Physical and Rehabilitation Medicine, 2020, 64, 101411.	2.3	1

Jérôme Coste

#	Article	IF	CITATIONS
37	Risk-Taking Behaviors of Adult Bedridden Patients in Neurosurgery: What Could/Should We Do?. Frontiers in Medicine, 2021, 8, 676538.	2.6	1
38	Conscious behavior after traumatic brain injury: Anatomo-functional support and therapeutic prospects. Annals of Physical and Rehabilitation Medicine, 2011, 54, e213-e214.	2.3	0
39	Quantitative rigidity evaluation during deep brain stimulation surgery - a preliminary study. Biomedizinische Technik, 2012, 57, .	0.8	0
40	ISDN2014_0298: REMOVED: Cerebral atrophy is linked to clinical severity and worsens with aging in patients with Pelizaeus–Merzbacher disease and Spastic Paraplegia type 2. International Journal of Developmental Neuroscience, 2015, 47, 90-90.	1.6	0
41	XXIInd Congress of the European Society for Stereotactic and Functional Neurosurgery. Madrid, Spain,September 28-October 1, 2016: Abstracts. Stereotactic and Functional Neurosurgery, 2016, 94, 1-132.	1.5	0
42	Cerebral quantitative DTI and tractography in 25 patients with PLP1-related disorders. European Journal of Paediatric Neurology, 2017, 21, e76.	1.6	0
43	Atlas Optimization for Deep Brain Stimulation. IFMBE Proceedings, 2021, , 130-142.	0.3	0