
Johan Zakrisson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3957458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An optical pascal in Sweden. Journal of Optics (United Kingdom), 2022, 24, 033002.	2.2	5
2	Thermodynamic effects in a gas modulated Invar-based dual Fabry–Pérot cavity refractometer. Metrologia, 2022, 59, 035003.	1.2	11
3	In situ determination of the penetration depth of mirrors in Fabry-Perot refractometers and its influence on assessment of refractivity and pressure. Optics Express, 2022, 30, 25891.	3.4	2
4	Assessment of gas molar density by gas modulation refractometry: A review of its basic operating principles and extraordinary performance. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 179, 106121.	2.9	4
5	Ability of gas modulation to reduce the pickup of drifts in refractometry. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2419.	2.1	8
6	Optical realization of the pascal—Characterization of two gas modulated refractometers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	1.2	16
7	The Short-Term Performances of Two Independent Gas Modulated Refractometers for Pressure Assessments. Sensors, 2021, 21, 6272.	3.8	6
8	Fabry–Perot-cavity-based refractometry without influence of mirror penetration depth. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	1.2	1
9	Procedure for robust assessment of cavity deformation in Fabry–Pérot based refractometers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	1.2	15
10	Ability of gas modulation to reduce the pickup of fluctuations in refractometry. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1956.	2.1	8
11	Invar-based refractometer for pressure assessments. Optics Letters, 2020, 45, 2652.	3.3	20
12	An invar-based fabry-perot cavity refractometer with a gallium fixed-point cell for assessment of pressure. Acta IMEKO (2012), 2020, 9, 293.	0.7	8
13	Recent advances in Fabry-Perot-based refractometry utilizing gas modulation for assessment of pressure. Acta IMEKO (2012), 2020, 9, 299.	0.7	7
14	Realizing Large-Area Arrays of Semiconducting Fullerene Nanostructures with Direct Laser Interference Patterning. Nano Letters, 2018, 18, 540-545.	9.1	7
15	Detecting Bacterial Surface Organelles on Single Cells Using Optical Tweezers. Langmuir, 2016, 32, 4521-4529.	3.5	17
16	Tethered cells in fluid flows—beyond the Stokes' drag force approach. Physical Biology, 2015, 12, 056006.	1.8	7
17	Biomechanical and Structural Features of CS2 Fimbriae of Enterotoxigenic Escherichia coli. Biophysical Journal, 2015, 109, 49-56.	0.5	20
18	Rigid multibody simulation of a helix-like structure: the dynamics of bacterial adhesion pili. European Biophysics Journal, 2015, 44, 291-300.	2.2	10

#	Article	IF	CITATIONS
19	The Shaft of the Type 1 Fimbriae Regulates an External Force to Match the FimH Catch Bond. Biophysical Journal, 2013, 104, 2137-2148.	0.5	38
20	Helix-like biopolymers can act as dampers of force for bacteria in flows. European Biophysics Journal, 2012, 41, 551-560.	2.2	31