Andrea Ag Giacomini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3957426/publications.pdf

Version: 2024-02-01

687363 642732 23 667 13 23 citations g-index h-index papers 23 23 23 743 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Treatment with the flavonoid 7,8-Dihydroxyflavone: a promising strategy for a constellation of body and brain disorders. Critical Reviews in Food Science and Nutrition, 2022, 62, 13-50.	10.3	30
2	Early Appearance of Dendritic Alterations in Neocortical Pyramidal Neurons of the Ts65Dn Model of Down Syndrome. Developmental Neuroscience, 2022, 44, 23-38.	2.0	8
3	The flavonoid 7,8-DHF fosters prenatal brain proliferation potency in a mouse model of Down syndrome. Scientific Reports, 2021, 11, 6300.	3.3	9
4	Early appearance of developmental alterations in the dendritic tree of the hippocampal granule cells in the Ts65Dn model of Down syndrome. Hippocampus, 2021, 31, 435-447.	1.9	7
5	Neuroanatomical alterations in higher-order thalamic nuclei of fetuses with Down syndrome. Clinical Neurology and Neurosurgery, 2020, 194, 105870.	1.4	11
6	Neonatal therapy with clenbuterol and salmeterol restores spinogenesis and dendritic complexity in the dentate gyrus of the Ts65Dn model of Down syndrome. Neurobiology of Disease, 2020, 140, 104874.	4.4	12
7	Timing of Treatment with the Flavonoid 7,8-DHF Critically Impacts on Its Effects on Learning and Memory in the Ts65Dn Mouse. Antioxidants, 2019, 8, 163.	5.1	15
8	Neonatal treatment with cyclosporine A restores neurogenesis and spinogenesis in the Ts65Dn model of Down syndrome. Neurobiology of Disease, 2019, 129, 44-55.	4.4	11
9	Subicular hypotrophy in fetuses with Down syndrome and in the Ts65Dn model of Down syndrome. Brain Pathology, 2019, 29, 366-379.	4.1	9
10	Abnormal development of the inferior temporal region in fetuses with Down syndrome. Brain Pathology, 2018, 28, 986-998.	4.1	34
11	Neurogenesis impairment: An early developmental defect in Down syndrome. Free Radical Biology and Medicine, 2018, 114, 15-32.	2.9	75
12	Treatment with corn oil improves neurogenesis and cognitive performance in the Ts65Dn mouse model of Down syndrome. Brain Research Bulletin, 2018, 140, 378-391.	3.0	14
13	Epigallocatechin gallate: A useful therapy for cognitive disability in Down syndrome?. Neurogenesis (Austin, Tex), 2017, 4, e1270383.	1.5	13
14	Long-term effect of neonatal inhibition of APP gamma-secretase on hippocampal development in the Ts65Dn mouse model of Down syndrome. Neurobiology of Disease, 2017, 103, 11-23.	4.4	14
15	A flavonoid agonist of the TrkB receptor for BDNF improves hippocampal neurogenesis and hippocampus-dependent memory in the Ts65Dn mouse model of DS. Experimental Neurology, 2017, 298, 79-96.	4.1	50
16	Neuroanatomical alterations and synaptic plasticity impairment in the perirhinal cortex of the Ts65Dn mouse model of Down syndrome. Neurobiology of Disease, 2017, 106, 89-100.	4.4	19
17	Lithium Restores Age-related Olfactory Impairment in the Ts65Dn Mouse Model of Down Syndrome. CNS and Neurological Disorders - Drug Targets, 2017, 16, 812-819.	1.4	10
18	SNX27, a protein involved in down syndrome, regulates GPR17 trafficking and oligodendrocyte differentiation. Glia, 2016, 64, 1437-1460.	4.9	20

#	Article	lF	CITATIONS
19	Short- and long-term effects of neonatal pharmacotherapy with epigallocatechin-3-gallate on hippocampal development in the Ts65Dn mouse model of Down syndrome. Neuroscience, 2016, 333, 277-301.	2.3	60
20	Timing of therapies for Down syndrome: the sooner, the better. Frontiers in Behavioral Neuroscience, 2015, 9, 265.	2.0	94
21	Inhibition of APP gamma-secretase restores Sonic Hedgehog signaling and neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiology of Disease, 2015, 82, 385-396.	4.4	37
22	Long-term effects of neonatal treatment with fluoxetine on cognitive performance in Ts65Dn mice. Neurobiology of Disease, 2015, 74, 204-218.	4.4	44
23	Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model. Brain, 2014, 137, 380-401.	7.6	71