Ce-Wen Nan

List of Publications by Citations

Source: https://exaly.com/author-pdf/3957164/ce-wen-nan-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21,938 318 141 73 h-index g-index citations papers 26,226 7.28 10.1 344 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
318	Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. <i>Journal of Applied Physics</i> , 2008 , 103, 031101	2.5	2829
317	Physics of inhomogeneous inorganic materials. <i>Progress in Materials Science</i> , 1993 , 37, 1-116	42.2	865
316	PEO/garnet composite electrolytes for solid-state lithium batteries: From Beramic-in-polymerIto Bolymer-in-ceramic[] <i>Nano Energy</i> , 2018 , 46, 176-184	17.1	672
315	New horizons for inorganic solid state ion conductors. <i>Energy and Environmental Science</i> , 2018 , 11, 1945	5-3 9 .76	601
314	Synergistic Coupling between LiLaZrTaO and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13779-13785	16.4	452
313	Giant Energy Density and Improved Discharge Efficiency of Solution-Processed Polymer Nanocomposites for Dielectric Energy Storage. <i>Advanced Materials</i> , 2016 , 28, 2055-61	24	432
312	Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. <i>Advanced Materials</i> , 2015 , 27, 819-24	24	416
311	BiCuSeO oxyselenides: new promising thermoelectric materials. <i>Energy and Environmental Science</i> , 2014 , 7, 2900-2924	35.4	416
310	Electric-field control of tri-state phase transformation with a selective dual-ion switch. <i>Nature</i> , 2017 , 546, 124-128	50.4	388
309	Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. <i>Electrochemistry Communications</i> , 2015 , 57, 27-30	5.1	369
308	Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. <i>Science</i> , 2019 , 365, 578-582	33.3	353
307	Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2903-2908	3.8	328
306	Magnetic-field-induced electric polarization in multiferroic nanostructures. <i>Physical Review Letters</i> , 2005 , 94, 197203	7.4	318
305	Topological-Structure Modulated Polymer Nanocomposites Exhibiting Highly Enhanced Dielectric Strength and Energy Density. <i>Advanced Functional Materials</i> , 2014 , 24, 3172-3178	15.6	304
304	Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16491		301
303	Multiferroic Heterostructures Integrating Ferroelectric and Magnetic Materials. <i>Advanced Materials</i> , 2016 , 28, 15-39	24	284
302	Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8063		256

(2018-2018)

301	Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. <i>Nature Communications</i> , 2018 , 9, 1813	17.4	237
300	Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. <i>ACS Energy Letters</i> , 2018 , 3, 1212-1218	20.1	236
299	Solid Garnet Batteries. <i>Joule</i> , 2019 , 3, 1190-1199	27.8	230
298	Polycrystalline BiCuSeO oxide as a potential thermoelectric material. <i>Energy and Environmental Science</i> , 2012 , 5, 7188	35.4	203
297	Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. <i>Energy Storage Materials</i> , 2019 , 17, 309-316	19.4	185
296	Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. <i>Physical Review Letters</i> , 2003 , 91, 266104	7.4	185
295	Intercalated Electrolyte with High Transference Number for Dendrite-Free Solid-State Lithium Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1901047	15.6	178
294	Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. <i>Energy and Environmental Science</i> , 2014 , 7, 1638	35.4	175
293	Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. <i>Applied Physics Letters</i> , 2007 , 90, 021914	3.4	173
292	A comprehensive review on synthesis methods for transition-metal oxide nanostructures. <i>CrystEngComm</i> , 2015 , 17, 3551-3585	3.3	172
291	High-Throughput Phase-Field Design of High-Energy-Density Polymer Nanocomposites. <i>Advanced Materials</i> , 2018 , 30, 1704380	24	171
290	Self-Suppression of Lithium Dendrite in All-Solid-State Lithium Metal Batteries with Poly(vinylidene difluoride)-Based Solid Electrolytes. <i>Advanced Materials</i> , 2019 , 31, e1806082	24	169
289	Solvent-Free Synthesis of Thin, Flexible, Nonflammable Garnet-Based Composite Solid Electrolyte for All-Solid-State Lithium Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 1903376	21.8	168
288	Oxide Electrolytes for Lithium Batteries. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 3603-3623	3.8	163
287	Preparation of Ca3Co4O9 and Improvement of its Thermoelectric Properties by Spark Plasma Sintering. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 1337-1340	3.8	159
286	BiFeO3BrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5920-5926	13	158
285	Polymer Nanocomposites with Ultrahigh Energy Density and High Discharge Efficiency by Modulating their Nanostructures in Three Dimensions. <i>Advanced Materials</i> , 2018 , 30, e1707269	24	157
284	Lithium-Salt-Rich PEO/LiLaTiO Interpenetrating Composite Electrolyte with Three-Dimensional Ceramic Nano-Backbone for All-Solid-State Lithium-Ion Batteries. <i>ACS Applied Materials & ACS Applied & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	157

283	Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors. <i>Applied Physics Letters</i> , 2002 , 81, 996-998	3.4	155
282	Influence of interfacial bonding on giant magnetoelectric response of multiferroic laminated composites of Tb1&DyxFe2 and PbZrxTi1&O3. <i>Applied Physics Letters</i> , 2003 , 83, 4366-4368	3.4	145
281	Synergistically Optimizing Electrical and Thermal Transport Properties of BiCuSeO via a Dual-Doping Approach. <i>Advanced Energy Materials</i> , 2016 , 6, 1502423	21.8	135
280	Largely enhanced energy density in flexible P(VDF-TrFE) nanocomposites by surface-modified electrospun BaSrTiO3 fibers. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1688-1693	13	135
279	Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. <i>Science</i> , 2019 , 366, 475-479	33.3	127
278	Significant enhancement in the visible light photocatalytic properties of BiFeO3graphene nanohybrids. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 823-829	13	124
277	Coupled magnetodielectric properties of laminated PbZr0.53Ti0.47O3/NiFe2O4 ceramics. <i>Journal of Applied Physics</i> , 2004 , 95, 5685-5690	2.5	122
276	High energy density of polymer nanocomposites at a low electric field induced by modulation of their topological-structure. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 8359-8365	13	120
275	Superior Energy Storage Performances of Polymer Nanocomposites via Modification of Filler/Polymer Interfaces. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800096	4.6	117
274	BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism. <i>Journal of Applied Physics</i> , 2009 , 105, 054310	2.5	117
273	Achieving High Energy Density in PVDF-Based Polymer Blends: Suppression of Early Polarization Saturation and Enhancement of Breakdown Strength. <i>ACS Applied Materials & Description</i> 8, 27236-27242	9.5	113
272	Mobile Ions in Composite Solids. <i>Chemical Reviews</i> , 2020 , 120, 4169-4221	68.1	105
271	Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. <i>Nature Nanotechnology</i> , 2018 , 13, 947-952	28.7	104
270	Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer. <i>Applied Physics Letters</i> , 2004 , 84, 3516-3518	3.4	102
269	Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO2@BaTiO3 nanofibers. <i>Nanoscale</i> , 2014 , 6, 6701-9	7.7	98
268	Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics. <i>Nature Communications</i> , 2019 , 10, 1843	17.4	97
267	Highly enhanced energy density induced by hetero-interface in sandwich-structured polymer nanocomposites. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 12321	13	97
266	Self-organized Synthesis of Silver Chainlike and Dendritic Nanostructures via a Solvothermal Method. <i>Chemistry of Materials</i> , 2003 , 15, 4436-4441	9.6	97

265	Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 9654-9661	9.5	96
264	Li2CO3: A Critical Issue for Developing Solid Garnet Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 252-262	20.1	96
263	Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrierphonon coupling. <i>Energy and Environmental Science</i> , 2017 , 10, 1590-159	93 5·4	94
262	High-Conductivity Argyrodite LiPSCl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium-Sulfur Batteries. <i>ACS Applied Materials & Description (Control of the Material </i>	8 5 5	94
261	Grain boundary behavior in varistor-capacitor TiO2-rich CaCu3Ti4O12 ceramics. <i>Journal of Applied Physics</i> , 2008 , 103, 074111	2.5	93
260	High-temperature electrical transport behaviors in textured Ca3Co4O9-based polycrystalline ceramics. <i>Applied Physics Letters</i> , 2009 , 94, 072107	3.4	91
259	Structural transitions and enhanced ferroelectricity in Ca and Mn co-doped BiFeO3 thin films. <i>Journal of Applied Physics</i> , 2011 , 110, 094106	2.5	85
258	Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. <i>Nano Energy</i> , 2019 , 62, 220-229	17.1	84
257	Polymer Nanocomposites with Interpenetrating Gradient Structure Exhibiting Ultrahigh Discharge Efficiency and Energy Density. <i>Advanced Energy Materials</i> , 2019 , 9, 1803411	21.8	84
256	Two Birds with One Stone: Metal©rganic Framework Derived Micro-/Nanostructured Ni2P/Ni Hybrids Embedded in Porous Carbon for Electrocatalysis and Energy Storage. <i>Advanced Functional</i> <i>Materials</i> , 2019 , 29, 1901510	15.6	82
255	Tailoring inorganicpolymer composites for the mass production of solid-state batteries. <i>Nature Reviews Materials</i> ,	73.3	82
254	Room-temperature ferromagnetic and ferroelectric behavior in polycrystalline ZnO-based thin films. <i>Applied Physics Letters</i> , 2007 , 90, 222110	3.4	80
253	Understanding and designing magnetoelectric heterostructures guided by computation: progresses, remaining questions, and perspectives. <i>Npj Computational Materials</i> , 2017 , 3,	10.9	78
252	Size-dependent electric voltage controlled magnetic anisotropy in multiferroic heterostructures: Interface-charge and strain comediated magnetoelectric coupling. <i>Physical Review B</i> , 2011 , 83,	3.3	78
251	Energy-storage performance and electrocaloric effect in (100)-oriented Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thick films. <i>Journal of Applied Physics</i> , 2011 , 110, 064109	9 ^{2.5}	77
250	The Gadolinium (Gd) and Tin (Sn) Co-doped BiFeO Nanoparticles as New Solar Light Active Photocatalyst. <i>Scientific Reports</i> , 2017 , 7, 42493	4.9	76
249	Angular Dependence of Exchange Bias and Magnetization Reversal Controlled by Electric-Field-Induced Competing Anisotropies. <i>Advanced Materials</i> , 2016 , 28, 363-9	24	76
248	Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4649-4657	13	76

247	Impact of P-Doped in Spinel LiNi0.5Mn1.5O4 on Degree of Disorder, Grain Morphology, and Electrochemical Performance. <i>Chemistry of Materials</i> , 2015 , 27, 7734-7742	9.6	75
246	Bandgap engineering and enhanced interface coupling of graphene B iFeO3 nanocomposites as efficient photocatalysts under visible light. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1967-1973	13	74
245	Band-Gap Engineering and Enhanced Photocatalytic Activity of Sm and Mn Doped BiFeO3 Nanoparticles. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 31-40	3.8	73
244	High permittivity Li and Al doped NiO ceramics. <i>Applied Physics Letters</i> , 2004 , 85, 5664-5666	3.4	73
243	Regulating Uniform Li Plating/Stripping via Dual-Conductive Metal-Organic Frameworks for High-Rate Lithium Metal Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2000786	15.6	71
242	Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide. <i>Applied Physics Letters</i> , 2013 , 102, 123905	3.4	71
241	High-Temperature Electrical Transport and Thermoelectric Power of Partially Substituted Ca3Co4O9-Based Ceramics. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 132-136	3.8	70
240	Solgel derived Lillaldr thin films as solid electrolytes for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13277	13	68
239	Ferroelastic switching in a layered-perovskite thin film. <i>Nature Communications</i> , 2016 , 7, 10636	17.4	67
238	Ultrahigh Breakdown Strength and Improved Energy Density of Polymer Nanocomposites with Gradient Distribution of Ceramic Nanoparticles. <i>Advanced Functional Materials</i> , 2020 , 30, 1906112	15.6	65
237	Oxygen vacancy-enriched MoO3N nanobelts for asymmetric supercapacitors with excellent room/low temperature performance. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13205-13214	13	64
236	Tuning Phase Composition of Polymer Nanocomposites toward High Energy Density and High Discharge Efficiency by Nonequilibrium Processing. <i>ACS Applied Materials & Discharge Efficiency By Nonequilibrium Processing</i> . <i>ACS Applied Materials & Discharge Efficiency By Nonequilibrium Processing</i> .	71 ⁷⁷⁵ 29	7≸∮
235	Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. <i>Journal of Applied Physics</i> , 2017 , 121, 244101	2.5	63
234	Enhanced Thermoelectric Properties of Bi2O2Se Ceramics by Bi Deficiencies. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 2465-2469	3.8	62
233	Inverse Problem for Composites with Imperfect Interface: Determination of Interfacial Thermal Resistance, Thermal Conductivity of Constituents, and Microstructural Parameters. <i>Journal of the American Ceramic Society</i> , 2004 , 83, 848-854	3.8	62
232	Effect of BaTiO3 size on dielectric property of BaTiO3/PVDF composites. <i>Journal of Electroceramics</i> , 2008 , 21, 381-384	1.5	59
231	High-Temperature Thermoelectric Behaviors of Fine-Grained Gd-Doped CaMnO3 Ceramics. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 2121-2124	3.8	58
230	Phase-Field Model of Electrothermal Breakdown in Flexible High-Temperature Nanocomposites under Extreme Conditions. <i>Advanced Energy Materials</i> , 2018 , 8, 1800509	21.8	56

(2009-2016)

229	Fast 180 [®] magnetization switching in a strain-mediated multiferroic heterostructure driven by a voltage. <i>Scientific Reports</i> , 2016 , 6, 27561	4.9	56
228	High Performance Oxides-Based Thermoelectric Materials. <i>Jom</i> , 2015 , 67, 211-221	2.1	55
227	Enhancement of thermoelectric performance in Cd-doped Ca3Co4O9via spin entropy, defect chemistry and phonon scattering. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19479-19487	13	55
226	Enhanced thermoelectric performance of In2O3-based ceramics via Nanostructuring and Point Defect Engineering. <i>Scientific Reports</i> , 2015 , 5, 7783	4.9	53
225	A surface-modified TiO2 nanorod array/P(VDFHFP) dielectric capacitor with ultra high energy density and efficiency. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 12777-12784	7.1	51
224	High-temperature thermoelectric behaviors of Sn-doped n-type Bi2O2Se ceramics. <i>Journal of Electroceramics</i> , 2015 , 34, 175-179	1.5	50
223	Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. <i>Science</i> , 2021 , 374, 100-104	33.3	49
222	Minimizing Voltage Loss in Efficient All-Inorganic CsPbI2Br Perovskite Solar Cells through Energy Level Alignment. <i>ACS Energy Letters</i> , 2019 , 4, 2491-2499	20.1	48
221	Dependence of giant magnetoelectric effect on interfacial bonding for multiferroic laminated composites of rare-earth-iron alloys and leaddirconatelitanate. <i>Journal of Applied Physics</i> , 2004 , 95, 2660-2664	2.5	48
220	Sintering Temperature Dependence of Grain Boundary Resistivity in a Rare-Earth-Doped ZnO Varistor. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 291-294	3.8	47
219	Complex electronic structure and compositing effect in high performance thermoelectric BiCuSeO. <i>Nature Communications</i> , 2019 , 10, 2814	17.4	46
218	Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO. <i>Nature Communications</i> , 2017 , 8, 104	17.4	46
217	Orientation-dependent multiferroic properties in Pb(Zr0.52Ti0.48)O3toFe2O4 nanocomposite thin films derived by a sol-gel processing. <i>Journal of Applied Physics</i> , 2008 , 103, 034103	2.5	46
216	Ferromagnetism and electrical transport in Fe-doped NiO. <i>Physical Review B</i> , 2006 , 73,	3.3	46
215	Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. <i>Energy Storage Materials</i> , 2020 , 25, 145-153	19.4	46
214	Fast Magnetic Domain-Wall Motion in a Ring-Shaped Nanowire Driven by a Voltage. <i>Nano Letters</i> , 2016 , 16, 2341-8	11.5	45
213	Hierarchical porous Li4Ti5O12IIiO2 composite anode materials with pseudocapacitive effect for high-rate and low-temperature applications. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 14339-14351	13	45
212	Universality of the surface magnetoelectric effect in half-metals. <i>Physical Review B</i> , 2009 , 79,	3.3	45

211	Enhanced thermoelectric performance of n-type Bi2O2Se by Cl-doping at Se site. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 1494-1501	3.8	44
210	Thermoelectric properties of Bi3+ substituted Co-based misfit-layered oxides. <i>Journal of Electroceramics</i> , 2008 , 21, 748-751	1.5	44
209	A novel pseudocapacitance mechanism of elm seed-like mesoporous MoO3\(\mathbb{N}\) nanosheets as electrodes for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 14560-14566	13	44
208	Water printing of ferroelectric polarization. <i>Nature Communications</i> , 2018 , 9, 3809	17.4	44
207	Current-controlled propagation of spin waves in antiparallel, coupled domains. <i>Nature Nanotechnology</i> , 2019 , 14, 691-697	28.7	43
206	Effect of the morphology of Lillallri solid electrolyte coating on the electrochemical performance of spinel LiMn1.95Ni0.05O3.98F0.02 cathode materials. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18889-18897	13	43
205	Dielectric and nonlinear electrical behaviors of La-doped CaCu3Ti4O12 ceramics. <i>Journal of Applied Physics</i> , 2009 , 106, 034111	2.5	43
204	Opportunities and challenges for magnetoelectric devices. APL Materials, 2019, 7, 080905	5.7	42
203	Thermoelectric Properties of Pb-Doped BiCuSeO Ceramics. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 2710-2713	3.8	42
202	Thickness-dependent dielectric and energy storage properties of (Pb0.96La0.04)(Zr0.98Ti0.02)O3 antiferroelectric thin films. <i>Journal of Applied Physics</i> , 2016 , 119, 124106	2.5	40
201	Synergistically optimizing electrical and thermal transport properties of Bi2O2Se ceramics by Te-substitution. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 326-333	3.8	39
200	High-temperature electrical transport behaviors of the layered Ca2Co2O5-based ceramics. <i>Applied Physics Letters</i> , 2010 , 96, 192104	3.4	39
199	Garnet-type oxide electrolyte with novel porous-dense bilayer configuration for rechargeable all-solid-state lithium batteries. <i>Ionics</i> , 2017 , 23, 2521-2527	2.7	38
198	Obtaining ultimate functionalities in nanocomposites: Design, control, and fabrication. <i>MRS Bulletin</i> , 2015 , 40, 719-724	3.2	37
197	Non-intuitive concomitant enhancement of dielectric permittivity, breakdown strength and energy density in percolative polymer nanocomposites by trace Ag nanodots. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15198-15206	13	36
196	High Capacity, Superior Cyclic Performances in All-Solid-State Lithium-Ion Batteries Based on 78LiS-22PS Glass-Ceramic Electrolytes Prepared via Simple Heat Treatment. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 28542-28548	9.5	36
195	Synthesis and Photocatalytic Behaviors of High Surface Area BiFeO3 Thin Films. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 2296-2299	3.8	36
194	Porous PZT Ceramics with High Hydrostatic Figure of Merit and Low Acoustic Impedance by TBA-Based Gel-Casting Process. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 1427	3.8	36

(2021-2019)

193	Synergistical Enhancement of Thermoelectric Properties in n-Type Bi2O2Se by Carrier Engineering and Hierarchical Microstructure. <i>Advanced Energy Materials</i> , 2019 , 9, 1900354	21.8	35
192	High Thermoelectric Performance of Nanostructured In2O3-Based Ceramics. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 2465-2469	3.8	34
191	Dielectric behavior of graphene/BaTiO3/polyvinylidene fluoride nanocomposite under high electric field. <i>Applied Physics Letters</i> , 2013 , 103, 072906	3.4	34
190	Synthesis and properties of multiferroic BiFeO3 ceramics. <i>Journal of Electroceramics</i> , 2008 , 21, 690-693	1.5	34
189	Rapid Prototyping of Piezoelectric Ceramics via Selective Laser Sintering and Gelcasting. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 17-22	3.8	34
188	Mechanical Switching of Nanoscale Multiferroic Phase Boundaries. <i>Advanced Functional Materials</i> , 2015 , 25, 3405-3413	15.6	33
187	Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1600053	21.8	33
186	Enhanced Thermoelectric Performance of Bi2O2Se with Ag Addition. <i>Materials</i> , 2015 , 8, 1568-1576	3.5	33
185	Effect of Transition-Metal Cobalt Doping on the Thermoelectric Performance of In2O3 Ceramics. Journal of the American Ceramic Society, 2010 , 93, 2938-2941	3.8	33
184	Polarization of High-Permittivity Dielectric NiO-Based Ceramics. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 1808-1811	3.8	33
183	Ionic Liquid Gating Control of Spin Reorientation Transition and Switching of Perpendicular Magnetic Anisotropy. <i>Advanced Materials</i> , 2018 , 30, e1801639	24	33
182	Spatially Resolved Ferroelectric Domain-Switching-Controlled Magnetism in CoFeB/Pb(MgNb)TiO Multiferroic Heterostructure. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 2642-2649	9.5	32
181	An in Situ-Formed Mosaic LiSn/LiF Interface Layer for High-Rate and Long-Life Garnet-Based Lithium Metal Batteries. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 34939-34947	9.5	32
180	Dielectric films for high performance capacitive energy storage: multiscale engineering. <i>Nanoscale</i> , 2020 , 12, 19582-19591	7.7	32
179	High Capacity and Superior Cyclic Performances of All-Solid-State Lithium Batteries Enabled by a Glass-Ceramics Solo. <i>ACS Applied Materials & Enabled State Sciences</i> , 2018 , 10, 10029-10035	9.5	31
178	Contribution of point defects and nano-grains to thermal transport behaviours of oxide-based thermoelectrics. <i>Npj Computational Materials</i> , 2016 , 2,	10.9	31
177	Enhanced Thermoelectricity in High-Temperature Phase Copper(I) Selenides Embedded with Cu2Te Nanoclusters. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 15196-204	9.5	30
176	Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes. <i>Journal of Materiomics</i> , 2021 , 7, 209-218	6.7	30

175	High-performance all-solid-state lithium ulfur batteries with sulfur/carbon nano-hybrids in a composite cathode. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23345-23356	13	30
174	Large d33 and enhanced ferroelectric/dielectric properties of poly(vinylidene fluoride)-based composites filled with Pb(Zr0.52Ti0.48)O3 nanofibers. <i>RSC Advances</i> , 2015 , 5, 51302-51307	3.7	29
173	Effects of Li6.75La3Zr1.75Ta0.25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes. <i>Solid State Ionics</i> , 2018 , 327, 32-38	3.3	29
172	Microstructure Manipulation for Enhancing the Resistance of Garnet-Type Solid Electrolytes to "Short Circuit" by Li Metal Anodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 5928-5937	9.5	28
171	Structural and Ferroic Properties of Zr-doped BiFeO3 Thin Films. Ferroelectrics, 2007, 357, 172-178	0.6	28
170	Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3 0 .7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping. <i>Rare Metals</i> , 2019 , 38, 189-198	5.5	27
169	Spatially Resolved Electric-Field Manipulation of Magnetism for CoFeB Mesoscopic Discs on Ferroelectrics. <i>Advanced Functional Materials</i> , 2018 , 28, 1706448	15.6	26
168	Boosting the thermoelectric performance of Bi2O2Se by isovalent doping. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 4634-4644	3.8	26
167	High energy density and efficiency achieved in nanocomposite film capacitors via structure modulation. <i>Applied Physics Letters</i> , 2018 , 112, 103902	3.4	26
166	Enhancement of Thermoelectric Performance in Hierarchical Mesoscopic Oxide Composites of Ca3Co4O9 and La0.8Sr0.2CoO3. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 1230-1235	3.8	26
165	High Cycling Stability for Solid-State Li Metal Batteries via Regulating Solvation Effect in Poly(Vinylidene Fluoride)-Based Electrolytes. <i>Batteries and Supercaps</i> , 2020 , 3, 876-883	5.6	25
164	Dielectric Behavior of Na0.5Bi0.5TiO3-Based Composites Incorporating Silver Particles. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 742-745	3.8	25
163	Influence of Crystallinity of Lithium Thiophosphate Solid Electrolytes on the Performance of Solid-State Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2100654	21.8	25
162	Enhancing the thermoelectric performance of ZnO epitaxial films by Ga doping and thermal tuning. Journal of Materials Chemistry A, 2018 , 6, 24128-24135	13	25
161	Response to Comment on "Self-Suppression of Lithium Dendrite in All-Solid-State Lithium Metal Batteries with Poly(vinylidene difluoride)-Based Solid Electrolytes". <i>Advanced Materials</i> , 2020 , 32, e200	00026	24
160	Toroidal polar topology in strained ferroelectric polymer. <i>Science</i> , 2021 , 371, 1050-1056	33.3	24
159	High-performance Li6PS5Cl-based all-solid-state lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18612-18618	13	23
158	High capacity and rate performance of LiNi0.5Co0.2Mn0.3O2 composite cathode for bulk-type all-solid-state lithium battery. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13332	13	23

(2018-2019)

157	Ferroelectric Photodetector with High Current on Ff Ratio (~1 🛮 04%) in Self-Assembled Topological Nanoislands. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 862-868	4	22
156	BiCuSeO as state-of-the-art thermoelectric materials for energy conversion: from thin films to bulks. <i>Rare Metals</i> , 2018 , 37, 259-273	5.5	22
155	Space charge effects on the dielectric response of polymer nanocomposites. <i>Applied Physics Letters</i> , 2017 , 111, 092901	3.4	22
154	Photocatalytic and magnetic behaviors of BiFeO3 thin films deposited on different substrates. Journal of Applied Physics, 2014 , 116, 174307	2.5	22
153	High-Temperature Thermoelectric Properties in the La2NRxCuO4 (R: Pr, Y, Nb) Ceramics. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 934-937	3.8	22
152	A new magnetoelectric resonance mode in bilayer structure composite of PZT layer and Terfenol-D/epoxy layer. <i>Journal of Electroceramics</i> , 2008 , 21, 390-393	1.5	22
151	Synthesis and electrochemical performance of rod-like spinel LiMn2O4 coated by LiAlBiD solid electrolyte. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14729	13	21
150	Enhanced Photocatalytic Performance under Visible and Near-Infrared Irradiation of CuSe/CuBell Composite via a Phase Junction. <i>Nanomaterials</i> , 2017 , 7,	5.4	21
149	Electrical and thermal transport behaviours of high-entropy perovskite thermoelectric oxides. Journal of Advanced Ceramics, 2021 , 10, 377-384	10.7	21
148	Flexible Robust and High-Density FeRAM from Array of Organic Ferroelectric Nano-Lamellae by Self-Assembly. <i>Advanced Science</i> , 2019 , 6, 1801931	13.6	21
147	Impact of lithium excess on the structural and electrochemical properties of the LiNi0.5Mn1.5O4 high-voltage cathode material. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20103-20107	13	20
146	Structure and electrochemical performance of spinel LiMn1.95Ni0.05O3.98F0.02 coated with Li-La-Zr-O solid electrolyte. <i>Journal of Solid State Electrochemistry</i> , 2014 , 18, 249-255	2.6	20
145	High-Temperature Transport Property of In2\(\mathbb{R}\)CexO3 (0\(\mathbb{R}\)\(\mathbb{D}\).10) Fine Grained Ceramics. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 2568-2572	3.8	20
144	High-temperature ferroelectric phase transition observed in multiferroic Bi0.91La0.05Tb0.04FeO3. <i>Applied Physics Letters</i> , 2009 , 95, 012909	3.4	20
143	Preparation of Ca3Co4O9 by polyacrylamide gel processing and its thermoelectric properties. Journal of Sol-Gel Science and Technology, 2007 , 44, 139-144	2.3	20
142	Lithium Argyrodite as Solid Electrolyte and Cathode Precursor for Solid-State Batteries with Long Cycle Life. <i>Advanced Energy Materials</i> , 2021 , 11, 2101370	21.8	20
141	Organic-Organic Composite Electrolyte Enables Ultralong Cycle Life in Solid-State Lithium Metal Batteries. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 24837-24844	9.5	19
140	Thermal Driven Giant Spin Dynamics at Three-Dimensional Heteroepitaxial Interface in NiZnFeO/BaTiO-Pillar Nanocomposites. <i>ACS Nano</i> , 2018 , 12, 3751-3758	16.7	19

139	Strain, temperature, and electric-field effects on the phase transition and piezoelectric responses of K0.5Na0.5NbO3 thin films. <i>Journal of Applied Physics</i> , 2018 , 123, 154106	2.5	19
138	Stabilizing Polyether Electrolyte with a 4 V Metal Oxide Cathode by Nanoscale Interfacial Coating. <i>ACS Applied Materials & Damp; Interfaces</i> , 2019 , 11, 28774-28780	9.5	19
137	Magnetic and Electrical Properties of (Mn, La)-Codoped SrTiO3 Thin Films. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 3263-3266	3.8	19
136	High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. <i>Journal of Materiomics</i> , 2020 , 6, 70-76	6.7	19
135	Low-dimensional nanostructured photocatalysts. <i>Journal of Advanced Ceramics</i> , 2015 , 4, 159-182	10.7	18
134	Low voltage induced reversible magnetoelectric coupling in Fe3O4 thin films for voltage tunable spintronic devices. <i>Materials Horizons</i> , 2018 , 5, 991-999	14.4	18
133	Origin of enhanced magnetoelectric coupling in NiFe2O4/BaTiO3 multilayers studied by x-ray magnetic circular dichroism. <i>Physical Review B</i> , 2014 , 89,	3.3	18
132	Influence of Al2O3 additive on the dielectric behavior and energy density of Ba0.5Sr0.5TiO3 ceramics. <i>Journal of Electroceramics</i> , 2012 , 29, 95-98	1.5	18
131	Grain-boundary-controlled impedances of electroceramics: Generalized effective-medium approach and brick-layer model. <i>Journal of Applied Physics</i> , 2001 , 89, 3955-3959	2.5	18
130	Deterministic Role of Concentration Surplus of Cation Vacancy over Anion Vacancy in Bipolar Memristive NiO. <i>ACS Applied Materials & Discourse (Memristive Nio)</i> 11583-91	9.5	18
129	Mechanical performance of polymer-infiltrated zirconia ceramics. <i>Journal of Dentistry</i> , 2017 , 58, 60-66	4.8	17
128	Mesoporous template-free gyroid-like nanostructures based on La and Mn co-doped bismuth ferrites with improved photocatalytic activity. <i>RSC Advances</i> , 2016 , 6, 114183-114189	3.7	17
127	Ionic Modulation of the Interfacial Magnetism in a Bilayer System Comprising a Heavy Metal and a Magnetic Insulator for Voltage-Tunable Spintronic Devices. <i>Advanced Materials</i> , 2018 , 30, e1802902	24	17
126	ZnO-NiO hetero-nanostructures as highly sensitive and selective triethylamine sensor. <i>Journal of Applied Physics</i> , 2014 , 116, 044309	2.5	17
125	Electric and magnetic properties of CoFe2O4/Pb(Zr0.52Ti0.48)O3 bilayer thin films prepared by pulsed-laser deposition. <i>Applied Physics A: Materials Science and Processing</i> , 2007 , 89, 553-558	2.6	17
124	Synthesis and Properties of Multiferroic La-Modified BiFeO3 Ceramics. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 060601012420007-???	3.8	17
123	Single-atom-layer traps in a solid electrolyte for lithium batteries. <i>Nature Communications</i> , 2020 , 11, 18	2 8 7.4	17
122	On the speed of piezostrain-mediated voltage-driven perpendicular magnetization reversal: a computational elastodynamics-micromagnetic phase-field study. <i>NPG Asia Materials</i> , 2017 , 9, e404-e404	4 ^{10.3}	16

121	Ferroelectric and Ferromagnetic Properties of Hot-Pressed Bi0.95\(\mathbb{B}\)La0.05TbxFeO3 Ceramics. Journal of the American Ceramic Society, 2007 , 90, 1444-1447	3.8	16
120	Interface-Induced Enhancement of Ferromagnetism in Insulating LaMnO Ultrathin Films. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 9, 44931-44937	9.5	16
119	Effect of Ni substitution on structural stability, micromorphology, and electrochemical performance of Li2MnSiO4/C cathode materials. <i>RSC Advances</i> , 2016 , 6, 111539-111548	3.7	16
118	Bi(1-x)La(x)CuSeO as New Tunable Full Solar Light Active Photocatalysts. <i>Scientific Reports</i> , 2016 , 6, 246	5 2,0 9	15
117	Strain-domain structure and stability diagrams for single-domain magnetic thin films. <i>Applied Physics Letters</i> , 2013 , 103, 142413	3.4	15
116	Super Long-Cycling All-Solid-State Battery with Thin Li 6 PS 5 Cl-Based Electrolyte. <i>Advanced Energy Materials</i> ,2200660	21.8	15
115	Strain modulated ferromagnetic to antiferromagnetic transition in FeRh/BaTiO3 (001) heterostructures. <i>Journal of Applied Physics</i> , 2017 , 121, 194101	2.5	14
114	Robust polarization switching in self-assembled BiFeO3 nanoislands with quad-domain structures. <i>Acta Materialia</i> , 2019 , 175, 324-330	8.4	14
113	Generation of hydrogen under visible light irradiation with enhanced photocatalytic activity of Bi2WO6/Cu1.8Se for organic pollutants under Vis-NIR light reign. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 3015-3025	3.8	14
112	Dielectric and nonlinear electrical behaviors of Ce-doped CaCu3Ti4O12 ceramics. <i>Journal of Electroceramics</i> , 2012 , 29, 250-253	1.5	14
111	Multiferroics: a beautiful but challenging multi-polar world. <i>National Science Review</i> , 2019 , 6, 620	10.8	13
110	Ferroelectric ceramics with enhanced remnant polarization by ordered coalescence of nano-crystals. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23547		13
109	Thermoelectric Performance of Zn and Ge Co-Doped In2O3 Fine-Grained Ceramics by the Spark Plasma Sintering. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 2279-2281	3.8	13
108	Influence of La Doping on Magnetic and Optical Properties of Bismuth Ferrite Nanofibers. <i>Journal of Nanomaterials</i> , 2012 , 2012, 1-5	3.2	13
107	Understanding and predicting geometrical constraint ferroelectric charged domain walls in a BiFeO3 island via phase-field simulations. <i>Applied Physics Letters</i> , 2018 , 113, 222902	3.4	13
106	Electric field controllable high-spin SrRuO3 driven by a solid ionic junction. <i>Physical Review B</i> , 2020 , 101,	3.3	12
105	Nanoscale Bandgap Tuning across an Inhomogeneous Ferroelectric Interface. <i>ACS Applied Materials & Materials (ACS Applied Materials Acs Applied Materials Acs Applied Materials Acs Applied Materials (ACS Applied Materials Acs Applied Materials Acs Applied Materials Acs Applied Materials (ACS Applied Materials Acs Applied Materials Acs Applied Materials Acs Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials Acc Applied Materials Acc Applied Materials (ACS Applied Materials </i>	9.5	12
104	Magnetoelectricity of lateral 1-3 type composites with CoFe2O4 ferromagnetic microstrips embedded in (K,Na)NbO3-based piezoceramic substrate. <i>Journal of Applied Physics</i> , 2011 , 110, 044104	2.5	12

103	Large Switchable Photoconduction within 2D Potential Well of a Layered Ferroelectric Heterostructure. <i>Advanced Materials</i> , 2020 , 32, e2003033	24	12
102	Ultrathin N-doped carbon-coated TiO2 coaxial nanofibers as anodes for lithium ion batteries. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 2939-2947	3.8	11
101	Perspective: voltage control of magnetization in multiferroic heterostructures. <i>National Science Review</i> , 2019 , 6, 621-624	10.8	11
100	Lattice Dynamics and Thermal Conductivity in CuZnCo SnSe. <i>Inorganic Chemistry</i> , 2018 , 57, 6051-6056	5.1	11
99	Interfacial orbital preferential occupation induced controllable uniaxial magnetic anisotropy observed in Ni/NiO(110) heterostructures. <i>Npj Quantum Materials</i> , 2017 , 2,	5	11
98	Thermoelectric Performance of Zn and Nd Co-doped In2O3 Ceramics. <i>Journal of Electronic Materials</i> , 2011 , 40, 1083-1086	1.9	11
97	Ferromagnetism in antiferromagnetic NiO-based thin films. <i>Journal of Applied Physics</i> , 2011 , 110, 04392	2 1 2.5	11
96	Magnetic properties of ZnO-doped cobalt ferrite. <i>Journal of Electroceramics</i> , 2008 , 21, 681-685	1.5	11
95	Ferroic Properties of Highly Dense Multiferroic Bi1\(\text{La0.05TbxFeO3}\) Ceramics Via Sheltered Spark Plasma Sintering. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 2189-2194	3.8	11
94	Boron nitride/agarose hydrogel composites with high thermal conductivities. <i>Rare Metals</i> , 2020 , 39, 375	5-3,82	11
93	Ferromagnetism and matrix-dependent charge transfer in strained LaMnO3IlaCoO3 superlattices. <i>Materials Research Letters</i> , 2018 , 6, 501-507	7.4	11
92	A magnetic glass state over the first-order ferromagnetic-to-antiferromagnetic transition in FeRh film. <i>Materials Research Letters</i> , 2017 , 5, 329-334	7.4	10
91	Visible-active photocatalytic behaviors observed in nanostructured lead chalcogenides PbX (X = S, Se, Te). <i>AIP Advances</i> , 2016 , 6, 015108	1.5	10
90	Magnetic and Photocatalytic Behaviors of Ba-Doped BiFeO3 Nanofibers. <i>International Journal of Applied Ceramic Technology</i> , 2014 , 11, 676-680	2	10
89	Characterization and properties of anatase TiO2 film prepared via colloidal sol method under low temperature. <i>Journal of Electroceramics</i> , 2008 , 21, 795-797	1.5	10
88	Tailoring magnetic order via atomically stacking 3d/5d electrons to achieve high-performance spintronic devices. <i>Applied Physics Reviews</i> , 2020 , 7, 011401	17.3	10
87	Aqueous MXene/Xanthan Gum Hybrid Inks for Screen-Printing Electromagnetic Shielding, Joule Heater, and Piezoresistive Sensor <i>Small</i> , 2022 , e2107087	11	10
86	High-throughput data-driven interface design of high-energy-density polymer nanocomposites. <i>Journal of Materiomics</i> , 2020 , 6, 573-581	6.7	9

(2020-2018)

85	Nanoscale control of stripe-ordered magnetic domain walls by vertical spin transfer torque in La0.67Sr0.33MnO3 film. <i>Applied Physics Letters</i> , 2018 , 112, 072408	3.4	9
84	Ferromagnetic and optical behaviors observed in Mn-doped ZnO-based thin films. <i>Thin Solid Films</i> , 2013 , 537, 239-241	2.2	9
83	Tunable Ferromagnetic Behaviors Observed in Highly Orientated Co-Doped ZnO Thin Films by the Bandgap Engineering. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 361-364	3.8	9
82	Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries. <i>Informa</i> Materily,	23.1	9
81	Thermoelectric Performance Enhancement of Vanadium Doped n-Type In2O3 Ceramics via Carrier Engineering and Phonon Suppression. <i>ACS Applied Energy Materials</i> , 2020 , 3, 1552-1558	6.1	9
80	Ionic Modulation of Interfacial Magnetism in Light Metal/Ferromagnetic Insulator Layered Nanostructures. <i>Advanced Functional Materials</i> , 2019 , 29, 1805592	15.6	9
79	Switching the chirality of a magnetic vortex deterministically with an electric field. <i>Materials Research Letters</i> , 2018 , 6, 669-675	7.4	9
78	Designing polymer nanocomposites with high energy density using machine learning. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	9
77	Self-etching Nito hydroxides@Nitu nanowire arrays with enhancing ultrahigh areal capacitance for flexible thin-film supercapacitors. <i>Rare Metals</i> , 2017 , 36, 691-697	5.5	8
76	Ferromagnetic and optical properties of Co doped ZnO hexagonal bipods. <i>Journal of Applied Physics</i> , 2012 , 112, 083916	2.5	8
75	Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films (Adv. Mater. 9/2011). <i>Advanced Materials</i> , 2011 , 23, 1061-1061	24	8
74	Tunable Trap Levels Observed in La and Eu Codoped CaAl2O4-Based Phosphor. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 2992-2994	3.8	8
73	Strain-induced modulation of oxygen vacancies and magnetic properties in La0.5Sr0.5MnO3 thin films. <i>MRS Communications</i> , 2016 , 6, 354-359	2.7	8
72	Enhancements of dielectric and energy storage performances in lead-free films with sandwich architecture. <i>Journal of the American Ceramic Society</i> , 2018 , 102, 936	3.8	8
71	Spin wave propagation in a ferrimagnetic thin film with perpendicular magnetic anisotropy. <i>Applied Physics Letters</i> , 2020 , 117, 232407	3.4	7
70	Oxygen Vacancy Dynamics at Room Temperature in Oxide Heterostructures. <i>ACS Applied Materials</i> & amp; Interfaces, 2018 , 10, 5107-5113	9.5	7
69	Unified approach for the estimate of effective magnetostriction of composites and polycrystals with particulate and columnar microstructures. <i>Physical Review B</i> , 2003 , 68,	3.3	7
68	Three-dimensional structured asymmetric electrolytes for high interface stability and fast Li-ion transport in solid-state Li-metal batteries. <i>Materials Today Energy</i> , 2020 , 18, 100522	7	7

67	Greatly enhanced breakdown strength and energy density in ultraviolet-irradiated polypropylene. <i>IET Nanodielectrics</i> ,	2.8	7
66	Enhanced Thermoelectric Performance of SmBaCuFeO5+¶Ag Composite Ceramics. <i>Journal of the American Ceramic Society</i> , 2016 , 99, 1266-1270	3.8	7
65	High strength and toughness in chromatic polymer-infiltrated zirconia ceramics. <i>Dental Materials</i> , 2016 , 32, 1555-1563	5.7	7
64	Lattice and spin dynamics in multiferroic BiFeO and MnO. <i>National Science Review</i> , 2019 , 6, 642-652	10.8	6
63	An alternating multilayer architecture boosts ultrahigh energy density and high discharge efficiency in polymer composites <i>RSC Advances</i> , 2020 , 10, 5886-5893	3.7	6
62	Cautions to predicate multiferroic by atomic force microscopy. AIP Advances, 2017, 7, 055003	1.5	6
61	High-Temperature Electrical Transport Behavior Observed in the La1.96M0.04CuO4 (M: Mg, Ca, Sr) Polycrystalline Ceramics. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 2055-2058	3.8	6
60	Solvothermal preparation and thermoelectric properties of ternary Sn B ille alloy. <i>Physica Status Solidi A</i> , 2003 , 199, 265-271		6
59	Phase-Field Simulations of Tunable Polar Topologies in Lead-Free Ferroelectric/Paraelectric Multilayers with Ultrahigh Energy Storage Performance <i>Advanced Materials</i> , 2022 , e2108772	24	6
58	Hidden metal-insulator transition in manganites synthesized via a controllable oxidation. <i>Science China Materials</i> , 2019 , 62, 577-585	7.1	6
57	Ultrahigh Energy Density in Continuously Gradient-Structured All-Organic Dielectric Polymer Films. <i>Advanced Functional Materials</i> ,2200848	15.6	6
56	Electric Field Writing of Ferroelectric Nano-Domains Near 71 th Domain Walls with Switchable Interfacial Conductivity. <i>Annalen Der Physik</i> , 2018 , 530, 1800130	2.6	5
55	Free-standing Reduced Graphene Oxide/MoO3-x Composite Film with High Performance for Flexible Supercapacitors. <i>ChemistrySelect</i> , 2019 , 4, 9165-9173	1.8	5
54	Anisotropic ferromagnetic behaviors in highly orientated epitaxial NiO-based thin films. <i>AIP Advances</i> , 2015 , 5, 077107	1.5	5
53	Thickness dependence of room temperature ferromagnetism observed in Fe-doped NiO thin films. <i>Applied Physics Letters</i> , 2014 , 104, 072402	3.4	5
52	Tunable ferromagnetism in Ni0.97 MnyO thin films with hole doping and their electronic structures. <i>Physical Review B</i> , 2011 , 83,	3.3	5
51	Modulating interfacial charge distribution and compatibility boosts high energy density and discharge efficiency of polymer nanocomposites <i>RSC Advances</i> , 2019 , 9, 35990-35997	3.7	5
50	Enhanced electric resistivity and dielectric energy storage by vacancy defect complex. <i>Energy Storage Materials</i> , 2021 , 42, 836-844	19.4	5

(2022-2015)

49	Electrical and Thermal Conduction Behaviors in La-Substituted GdBaCuFeO5+ICeramics. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 3179-3184	3.8	4
48	High Temperature Transport Property of Copper site Doped La2CuO4. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 1471-1476	3.8	4
47	Magnetic and dielectric properties of a double-percolating Ni0.3Zn0.7Fe1.95O4-Ni-polymer composite. <i>Journal of Electroceramics</i> , 2008 , 21, 385-389	1.5	4
46	High Thermoelectric Performance of AgSbPbSe Prepared by Fast Nonequilibrium Synthesis. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 12, 41333-41341	9.5	4
45	FeVSb-based amorphous films with ultra-low thermal conductivity and high ZT: a potential material for thermoelectric generators. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11435-11445	13	4
44	Inkjet Printing of Perovskite Nanosheets for Microcapacitors. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100402	6.4	4
43	Magnetoelectric phase transition driven by interfacial-engineered Dzyaloshinskii-Moriya interaction. <i>Nature Communications</i> , 2021 , 12, 5453	17.4	4
42	Controllable electrical, magnetoelectric and optical properties of BiFeO3 via domain engineering. <i>Progress in Materials Science</i> , 2022 , 127, 100943	42.2	4
41	Geometry confined polar vertex domains in self-assembled BiFeO3 nano-islands. <i>Materials Research Letters</i> , 2019 , 7, 399-404	7.4	3
40	Phase-separation-driven formation of Nickel©obalt oxide nanotubes as high-capacity anode materials for lithium-ion batteries. <i>Materials Research Letters</i> , 2019 , 7, 368-375	7.4	3
39	Solid-State Lithium Batteries: Intercalated Electrolyte with High Transference Number for Dendrite-Free Solid-State Lithium Batteries (Adv. Funct. Mater. 28/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970196	15.6	3
38	Structure and properties of Zn-doped CoFe2O4 thin films via a solgel method. <i>Journal of Electroceramics</i> , 2008 , 21, 686-689	1.5	3
37	A Valence Gradient Protective Layer for Dendrite-Free and Highly Stable Lithium Metal Anodes. <i>Advanced Energy Materials</i> ,2103332	21.8	3
36	Tuning ferroelectricity of polymer blends for flexible electrical energy storage applications. <i>Science China Materials</i> , 2021 , 64, 1642-1652	7.1	3
35	Self-assembly growth of a multiferroic topological nanoisland array. <i>Nanoscale</i> , 2019 , 11, 20514-20521	7.7	3
34	Physical and chemical strains co-tuned magnetic properties of double perovskite PrBaMn2O5.5+ epitaxial films. <i>Applied Physics Letters</i> , 2019 , 115, 081903	3.4	2
33	Polymer-infiltrated layered silicates for dental restorative materials. <i>Rare Metals</i> , 2019 , 38, 1003-1014	5.5	2
32	Significantly improved interface between PVDF-based polymer electrolyte and lithium metal via thermal-electrochemical treatment. <i>Energy Storage Materials</i> , 2022 , 46, 452-460	19.4	2

31	Long decay length of magnon-polarons in BiFeO/LaSrMnO heterostructures <i>Nature Communications</i> , 2021 , 12, 7258	17.4	2
30	Stabilization of ferroelastic charged domain walls in self-assembled BiFeO3 nanoislands. <i>Journal of Applied Physics</i> , 2020 , 128, 124103	2.5	2
29	Modeling and predicting responses of magnetoelectric materials. MRS Bulletin, 2018, 43, 829-833	3.2	2
28	Machine learning in energy storage materials		2
27	A Cross-Linked Poly(Ethylene Oxide)-Based Electrolyte for All-Solid-State Lithium Metal Batteries With Long Cycling Stability. <i>Frontiers in Materials</i> , 2022 , 9,	4	2
26	Polymer Nanocomposites: Polymer Nanocomposites with Interpenetrating Gradient Structure Exhibiting Ultrahigh Discharge Efficiency and Energy Density (Adv. Energy Mater. 15/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970047	21.8	1
25	Improved Structural Reversibility and Cycling Stability of Li2MnSiO4 Cathode Material by the Pillar Effect of [TiOx] Polyanions. <i>ChemistrySelect</i> , 2018 , 3, 4047-4057	1.8	1
24	Acidic aqueous solution switching of magnetism in BiFeO3/La1 IkSrxMnO3 heterostructures. <i>Journal of Applied Physics</i> , 2019 , 126, 075301	2.5	1
23	Ca doping effect on the magnetic and electronic transport properties in double perovskite PrBaCo2O5+Ifilms. <i>Applied Physics Letters</i> , 2017 , 111, 232406	3.4	1
22	Electric and magnetic behaviors observed in NiO-based thin films under light-irradiation. <i>Journal of Applied Physics</i> , 2014 , 116, 093710	2.5	1
21	Magnetoelectric Properties of Multiferroic Composites with Pseudo 1B Type Structure. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 966, 1		1
20	Hydrothermal synthesis and dielectric properties of lanthanum titanate ceramics. <i>Central South University</i> , 2005 , 12, 251-254		1
19	Multiscale approaches to thermoelectric materials and devices		1
18	Rheological Behavior and Thermal Conductivities of Emulsion-Based Thermal Pastes. <i>Journal of Electronic Materials</i> , 2020 , 49, 2100-2109	1.9	1
17	Enhanced CO2 Reduction Performance of BiCuSeO-Based Hybrid Catalysts by Synergetic Photo-Thermoelectric Effect. <i>Advanced Functional Materials</i> , 2021 , 31, 2105001	15.6	1
16	Ferroelectric Materials: Angular Dependence of Exchange Bias and Magnetization Reversal Controlled by Electric-Field-Induced Competing Anisotropies (Adv. Mater. 2/2016). <i>Advanced Materials</i> , 2016 , 28, 391-391	24	1
15	Polarization-switching pathway determined electrical transport behaviors in rhombohedral BiFeO thin films. <i>Nanoscale</i> , 2021 , 13, 17746-17753	7.7	1
14	Perspectives on domain engineering for dielectric energy storage thin films. <i>Applied Physics Letters</i> , 2022 , 120, 150501	3.4	1

LIST OF PUBLICATIONS

13	Electrical Transport Properties of La2CuO4 Ceramics Processed by the Spark Plasma Sintering. Journal of the American Ceramic Society, 2007 , 90, 070924065850007-???	3.8	О
12	Seeking New Layered Oxyselenides with Promising Thermoelectric Performance. <i>Advanced Functional Materials</i> ,2113164	15.6	O
11	Microscopic physical origin of polarization induced large tunneling electroresistance in tetragonal-phase BiFeO3. <i>Acta Materialia</i> , 2022 , 225, 117564	8.4	O
10	Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions 2020 , 191-293		O
9	High thermoelectric performance of high-mobility Ga-doped ZnO films via homogenous interface design. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 3992-3999	3.8	О
8	Promoting Metamagnetic Transition by Interphase Magnetic Coupling. <i>Advanced Quantum Technologies</i> , 2021 , 4, 2000094	4.3	O
7	A Hidden Mesoscopic Feature Revealed By Electron Microscopy Could Facilitate Ion Transport In Solid Electrolytes. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1308-1309	0.5	
6	Magnetic Anisotropy: Ionic Liquid Gating Control of Spin Reorientation Transition and Switching of Perpendicular Magnetic Anisotropy (Adv. Mater. 30/2018). <i>Advanced Materials</i> , 2018 , 30, 1870223	24	
5	Emerging ferromagnetic phase in self-assembled mixed valence manganite nanowires. <i>Applied Physics Letters</i> , 2019 , 115, 162405	3.4	
4	New materials from non-intuitive composite effects. <i>International Journal of Materials Research</i> , 2022 , 94, 1148-1152	0.5	
3	Compressive Strain-Tuned Epitaxial Nature and Physical Properties of Double-Perovskite PrBaCo2O5.5+IThin Films. <i>Crystal Growth and Design</i> , 2021 , 21, 6802-6809	3.5	
2	Spintronics: Ionic Modulation of the Interfacial Magnetism in a Bilayer System Comprising a Heavy Metal and a Magnetic Insulator for Voltage-Tunable Spintronic Devices (Adv. Mater. 40/2018). <i>Advanced Materials</i> , 2018 , 30, 1870302	24	
1	Degeneration of Key Structural Components Resulting in Ageing of Supercapacitors and the Related Chemical Ageing Mechanism. <i>ACS Applied Materials & Description</i> (2011), 13, 39379-39393	9.5	