Daniel T Monaghan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3957038/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anatomical distributions of four pharmacologically distinct 3H-L-glutamate binding sites. Nature, 1983, 306, 176-179.	13.7	528
2	The NMDA receptor as a target for cognitive enhancement. Neuropharmacology, 2013, 64, 13-26.	2.0	206
3	Extrasynaptic NR2B and NR2D subunits of NMDA receptors shape â€~superslow' afterburst EPSC in rat hippocampus. Journal of Physiology, 2004, 558, 451-463.	1.3	142
4	Structure-activity analysis of a novel NR2C/NR2D-preferring NMDA receptor antagonist: 1-(phenanthrene-2-carbonyl) piperazine-2,3-dicarboxylic acid. British Journal of Pharmacology, 2004, 141, 508-516.	2.7	122
5	Distinct NMDA Receptor Subpopulations Contribute to Long-Term Potentiation and Long-ÂTerm Depression Induction. Journal of Neuroscience, 2000, 20, RC81-RC81.	1.7	116
6	Insulin potentiates N-methyl-d-aspartate receptor activity in Xenopus oocytes and rat hippocampus. Neuroscience Letters, 1995, 192, 5-8.	1.0	109
7	Different NMDA receptor subtypes mediate induction of longâ€ŧerm potentiation and two forms of shortâ€ŧerm potentiation at CA1 synapses in rat hippocampus <i>in vitro</i> . Journal of Physiology, 2013, 591, 955-972.	1.3	83
8	A Novel Family of Negative and Positive Allosteric Modulators of NMDA Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 614-621.	1.3	80
9	Pharmacological modulation of NMDA receptor activity and the advent of negative and positive allosteric modulators. Neurochemistry International, 2012, 61, 581-592.	1.9	77
10	Pharmacological heterogeneity of NMDA receptors: characterization of NR1a/NR2D heteromers expressed in Xenopus oocytes. European Journal of Pharmacology, 1997, 320, 87-94.	1.7	71
11	Dextromethorphan and Other N-Methyl-D-Aspartate Receptor Antagonists Are Teratogenic in the Avian Embryo Model. Pediatric Research, 1998, 43, 1-7.	1.1	65
12	Synthesis and Pharmacology ofN1-Substituted Piperazine-2,3-dicarboxylic Acid Derivatives Acting as NMDA Receptor Antagonists. Journal of Medicinal Chemistry, 2005, 48, 2627-2637.	2.9	56
13	GluN2D N-Methyl-D-Aspartate Receptor Subunit Contribution to the Stimulation of Brain Activity and Gamma Oscillations by Ketamine: Implications for Schizophrenia. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 702-711.	1.3	56
14	The effect of competitive antagonist chain length on NMDA receptor subunit selectivity. Neuropharmacology, 2005, 48, 354-359.	2.0	52
15	The NMDA receptor GluN2C subunit controls cortical excitatory-inhibitory balance, neuronal oscillations and cognitive function. Scientific Reports, 2016, 6, 38321.	1.6	50
16	<i>N</i> -Methyl-d-aspartate (NMDA) Receptor NR2 Subunit Selectivity of a Series of Novel Piperazine-2,3-dicarboxylate Derivatives: Preferential Blockade of Extrasynaptic NMDA Receptors in the Rat Hippocampal CA3-CA1 Synapse. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 618-626	1.3	46
17	Positive and Negative Allosteric Modulators of <i>N</i> -Methyl- <scp>d</scp> -aspartate (NMDA) Receptors: Structure–Activity Relationships and Mechanisms of Action. Journal of Medicinal Chemistry, 2019, 62, 3-23.	2.9	44
18	Identification of Subunit- and Antagonist-Specific Amino Acid Residues in the N-Methyl-d-aspartate Receptor Glutamate-Binding Pocket. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1066-1074.	1.3	37

DANIEL T MONAGHAN

#	Article	IF	CITATIONS
19	Coumarin-3-carboxylic acid derivatives as potentiators and inhibitors of recombinant and native N-methyl-d-aspartate receptors. Neurochemistry International, 2012, 61, 593-600.	1.9	37
20	Selective inhibition of GluN2D-containing N-methyl-D-aspartate receptors prevents tissue plasminogen activator-promoted neurotoxicity both in vitro and in vivo. Molecular Neurodegeneration, 2011, 6, 68.	4.4	33
21	Structure-activity relationships for allosteric NMDA receptor inhibitors based on 2-naphthoic acid. Neuropharmacology, 2012, 62, 1730-1736.	2.0	33
22	Multiple roles of GluN2B-containing NMDA receptors in synaptic plasticity in juvenile hippocampus. Neuropharmacology, 2017, 112, 76-83.	2.0	33
23	In the Telencephalon, GluN2C NMDA Receptor Subunit mRNA is Predominately Expressed in Glial Cells and GluN2D mRNA in Interneurons. Neurochemical Research, 2019, 44, 61-77.	1.6	33
24	The distribution of [3H]kainate binding sites in primate hippocampus is similar to the distribution of both Ca2+-sensitive and Ca2+-insensitive [3H]kainate binding sites in rat hippocampus. Neurochemical Research, 1986, 11, 1073-1082.	1.6	31
25	Chapter 12 Molecular determinants of NMDA receptor pharmacological diversity. Progress in Brain Research, 1998, 116, 171-190.	0.9	31
26	Piperazine-2,3-dicarboxylic Acid Derivatives as Dual Antagonists of NMDA and GluK1-Containing Kainate Receptors. Journal of Medicinal Chemistry, 2012, 55, 327-341.	2.9	19
27	Structural basis of subtype-selective competitive antagonism for GluN2C/2D-containing NMDA receptors. Nature Communications, 2020, 11, 423.	5.8	19
28	Mechanism and properties of positive allosteric modulation of N -methyl- d -aspartate receptors by 6-alkyl 2-naphthoic acid derivatives. Neuropharmacology, 2017, 125, 64-79.	2.0	15
29	Organotypic Brain Slice Cultures for Functional Analysis of Alcohol-Related Disorders: Novel Versus Conventional Preparations. Alcoholism: Clinical and Experimental Research, 1998, 22, 51-59.	1.4	13
30	The NMDA receptor intracellular C-terminal domains reciprocally interact with allosteric modulators. Biochemical Pharmacology, 2019, 159, 140-153.	2.0	13
31	NMDA receptors containing GluN2C and GluN2D subunits have opposing roles in modulating neuronal oscillations; potential mechanism for bidirectional feedback. Brain Research, 2020, 1727, 146571.	1.1	12
32	Bidirectional Effect of Pregnenolone Sulfate on GluN1/GluN2A <i>N</i> -Methyl-d-Aspartate Receptor Gating Depending on Extracellular Calcium and Intracellular Milieu. Molecular Pharmacology, 2015, 88, 650-659.	1.0	11
33	Investigation of the structural requirements for N-methyl-D-aspartate receptor positive and negative allosteric modulators based on 2-naphthoic acid. European Journal of Medicinal Chemistry, 2019, 164, 471-498.	2.6	10
34	Regional variations in NMDA receptor downregulation in streptozotocin-diabetic rat brain. Brain Research, 2006, 1115, 217-222.	1.1	9
35	Synthesis of a Series of Novel 3,9-Disubstituted Phenanthrenes as Analogues of Known N-Methyl-d-aspartate Receptor Allosteric Modulators. Synthesis, 2015, 47, 1593-1610.	1.2	9
36	A single-channel mechanism for pharmacological potentiation of GluN1/GluN2A NMDA receptors. Scientific Reports, 2017, 7, 6933.	1.6	7

3

#	Article	IF	CITATIONS
37	Pharmacology of NMDA Receptors. Frontiers in Neuroscience, 2008, , 257-281.	0.0	3
38	The continually evolving role of NMDA receptors in neurobiology and disease. Neuropharmacology, 2022, 210, 109042.	2.0	3
39	The Excitatory Amino Acid System. , 0, , 67-84.		2
40	Pharmacological characterization of a novel negative allosteric modulator of NMDA receptors, UBP792. Neuropharmacology, 2021, 201, 108818.	2.0	0
41	СРР., 2007, , 1-6.		0