Tyler J Alban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3957012/publications.pdf Version: 2024-02-01

TVIEDIAIRAN

#	Article	IF	CITATIONS
1	Phenotypic and molecular states of IDH1 mutation-induced CD24-positive glioma stem-like cells. Neoplasia, 2022, 28, 100790.	2.3	5
2	Preclinical Modeling of Surgery and Steroid Therapy for Glioblastoma Reveals Changes in Immunophenotype that are Associated with Tumor Growth and Outcome. Clinical Cancer Research, 2021, 27, 2038-2049.	3.2	22
3	Immunotherapy biomarkers: the long and winding road. Nature Reviews Clinical Oncology, 2021, 18, 323-324.	12.5	14
4	Increased incidence of venous thromboembolism with cancer immunotherapy. Med, 2021, 2, 423-434.e3.	2.2	46
5	Bazedoxifene inhibits sustained STAT3 activation and increases survival in GBM. Translational Oncology, 2021, 14, 101192.	1.7	8
6	High-Dimensional Analysis of Circulating and Tissue-Derived Myeloid-Derived Suppressor Cells from Patients with Glioblastoma. Methods in Molecular Biology, 2021, 2236, 157-175.	0.4	1
7	Hepatobiliary malignancies have distinct peripheral myeloid-derived suppressor cell signatures and tumor myeloid cell profiles. Scientific Reports, 2020, 10, 18848.	1.6	10
8	Glioblastoma Myeloid-Derived Suppressor Cell Subsets Express Differential Macrophage Migration Inhibitory Factor Receptor Profiles That Can Be Targeted to Reduce Immune Suppression. Frontiers in Immunology, 2020, 11, 1191.	2.2	92
9	JAM-A functions as a female microglial tumor suppressor in glioblastoma. Neuro-Oncology, 2020, 22, 1591-1601.	0.6	26
10	Identifying conserved molecular targets required for cell migration of glioblastoma cancer stem cells. Cell Death and Disease, 2020, 11, 152.	2.7	23
11	Myeloid-Derived Suppressor Cell Subsets Drive Glioblastoma Growth in a Sex-Specific Manner. Cancer Discovery, 2020, 10, 1210-1225.	7.7	138
12	ADAMDEC1 Maintains a Growth Factor Signaling Loop in Cancer Stem Cells. Cancer Discovery, 2019, 9, 1574-1589.	7.7	59
13	Development of a Cx46 Targeting Strategy for Cancer Stem Cells. Cell Reports, 2019, 27, 1062-1072.e5.	2.9	27
14	Metronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cells. JCI Insight, 2019, 4, .	2.3	82
15	Cx26 drives self-renewal in triple-negative breast cancer via interaction with NANOG and focal adhesion kinase. Nature Communications, 2018, 9, 578.	5.8	60
16	ACTR-09. TARGETING MYELOID DERIVED SUPPRESSOR CELLS: PHASE 0/1 TRIAL OF LOW DOSE CAPECITABINE + BEVACIZUMAB IN PATIENTS WITH RECURRENT GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi12-vi13.	0.6	0
17	Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. JCI Insight, 2018, 3, .	2.3	137
18	Comparing and Contrasting the Effects of <i>Drosophila</i> Condensin II Subunit dCAP-D3 Overexpression and Depletion <i>in Vivo</i> . Genetics, 2018, 210, 531-546.	1.2	2

Tyler J Alban

#	Article	IF	CITATIONS
19	Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self-Renewal through Reduced TLR4 Expression. Cell Stem Cell, 2017, 20, 450-461.e4.	5.2	147
20	New Advances and Challenges of Targeting Cancer Stem Cells. Cancer Research, 2017, 77, 5222-5227.	0.4	28
21	Stromal Versican Regulates Tumor Growth by Promoting Angiogenesis. Scientific Reports, 2017, 7, 17225.	1.6	63
22	Development of a Cx46 Targeting Strategy for Cancer Stem Cells. SSRN Electronic Journal, 0, , .	0.4	1