Heather M Yates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3956944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding nanomechanical and surface ellipsometry of optical F-doped SnO2 thin films by in-line APCVD. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	1
2	Comparing Lead Iodide and Lead Acetate Based Perovskite Absorber Layers by Aerosol-Assisted Chemical Vapor Deposition. , 2020, , .		0
3	Flame Assisted Chemical Vapour Deposition of NiO hole transport layers for planar perovskite cells. Surface and Coatings Technology, 2020, 385, 125423.	4.8	27
4	Improved FTO/NiOx Interfaces for Inverted Planar Triple-Cation Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1302-1308.	2.5	10
5	Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells. Journal of Materials Chemistry C, 2019, 7, 13235-13242.	5.5	13
6	Optically tuned and large-grained bromine doped CH3NH3PbI3 perovskite thin films via aerosol-assisted chemical vapour deposition. Materials Chemistry and Physics, 2019, 223, 157-163.	4.0	5
7	Roll to roll atmospheric pressure plasma enhanced CVD of titania as a step towards the realisation of large area perovskite solar cell technology. Journal of Materials Chemistry C, 2018, 6, 1988-1995.	5.5	16
8	Transparent Conductive Oxide Films for High-Performance Dye-Sensitized Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 518-524.	2.5	9
9	1 cm2 CH3NH3PbI3 mesoporous solar cells with 17.8% steady-state efficiency by tailoring front FTO electrodes. Journal of Materials Chemistry C, 2017, 5, 4946-4950.	5.5	12
10	Growth patterns and properties of aerosol-assisted chemical vapor deposition of CH3NH3PbI3 films in a single step. Surface and Coatings Technology, 2017, 321, 336-340.	4.8	15
11	Dual functionality anti-reflection and biocidal coatings. Surface and Coatings Technology, 2017, 324, 201-207.	4.8	5
12	Surface-related properties of perovskite CH ₃ NH ₃ PbI ₃ thin films by aerosol-assisted chemical vapour deposition. Journal of Materials Chemistry C, 2017, 5, 8366-8370.	5.5	16
13	Translation Effects in Fluorine Doped Tin Oxide Thin Film Properties by Atmospheric Pressure Chemical Vapour Deposition. Coatings, 2016, 6, 43.	2.6	7
14	Progression towards high efficiency perovskite solar cells via optimisation of the front electrode and blocking layer. Journal of Materials Chemistry C, 2016, 4, 11269-11277.	5.5	17
15	Optimised atmospheric pressure CVD of monoclinic VO2 thin films with picosecond phase transition. Surface and Coatings Technology, 2016, 287, 160-165.	4.8	15
16	Durable high-performance anti-reflection coatings via atmospheric pressure processing. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1544-1549.	1.8	1
17	Enhanced optical performance of APCVD zinc oxide via post growth plasma treatment at atmospheric pressure. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1016-1021.	0.8	0
18	APCVD of dual layer transparent conductive oxides for photovoltaic applications. Thin Solid Films, 2015, 590, 260-265.	1.8	6

HEATHER M YATES

#	Article	IF	CITATIONS
19	The Influence of F-Doping in SnO2 Thin Films. Physics Procedia, 2013, 46, 159-166.	1.2	9
20	The development of high performance SnO2:F as TCOs for thin film silicon solar cells. Surface and Coatings Technology, 2012, 213, 167-174.	4.8	34
21	Antimicrobial Activity Against Hospitalâ€related Pathogens of Dual Layer CuO/TiO ₂ Coatings Prepared by CVD. Chemical Vapor Deposition, 2012, 18, 140-146.	1.3	7
22	Deposition of thin film SnO2:F onto aluminium foil for use in flexible tandem solar cells. Thin Solid Films, 2011, 519, 7731-7737.	1.8	5
23	Effects of APCVD Growth Conditions on the Photocatalytic Behaviour of Titania Films. ECS Transactions, 2009, 25, 781-788.	0.5	1
24	A Single-Step APCVD Route to Novel Dual Functionality: Self-Cleaning Biocidal Titania-Copper Films. ECS Transactions, 2009, 25, 1007-1014.	0.5	2
25	Optimization of Solar Cell Performance using Atmospheric Pressure Chemical Vapour Deposition deposited TCOs. ECS Transactions, 2009, 25, 789-796.	O.5	4
26	Doped Iron Oxide Thin Films for Photoelectrochemical Generation of Hydrogen from Water. ECS Transactions, 2009, 25, 1081-1086.	0.5	3
27	Low Temperature Growth of Photoactive Titania by Atmospheric Pressure Plasma. Plasma Processes and Polymers, 2009, 6, 575-582.	3.0	16
28	One pot direct hydrothermal growth of photoactive TiO2 films on glass. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 81-85.	3.9	27
29	The growth of copper oxides on glass by flame assisted chemical vapour deposition. Thin Solid Films, 2008, 517, 517-521.	1.8	27
30	Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4. Applied Microbiology and Biotechnology, 2008, 79, 127-133.	3.6	127
31	Controlled Nanostructured Silver Coated Surfaces by Atmospheric Pressure Chemical Vapour Deposition. Chemical Vapor Deposition, 2008, 14, 14-24.	1.3	18
32	Photo-induced self-cleaning and biocidal behaviour of titania and copper oxide multilayers. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197, 197-205.	3.9	77
33	Photoactive Thin Silver Films by Atmospheric Pressure CVD. International Journal of Photoenergy, 2008, 2008, 1-8.	2.5	6
34	Multi-functional self-cleaning thermochromic films by atmospheric pressure chemical vapour deposition. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 387-397.	3.9	31
35	Atmospheric Pressure Glow Discharge CVD of Al2 O3 Thin Films. Plasma Processes and Polymers, 2006, 3, 597-605.	3.0	20
36	The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 213-223.	3.9	189

HEATHER M YATES

#	Article	IF	CITATIONS
37	Modification of the Natural Photonic Bandgap of Synthetic Opals via Infilling with Crystalline InP. Advanced Functional Materials, 2005, 15, 411-417.	14.9	18
38	Photonic band gap properties of GaP opals with a new topology. Applied Physics B: Lasers and Optics, 2005, 81, 205-208.	2.2	3
39	Impact of GaP layer deposition upon photonic bandgap behaviour of opal. Journal of Physics Condensed Matter, 2000, 12, 339-348.	1.8	12
40	Opal-based photonic crystal with double photonic bandgap structure. Journal of Physics Condensed Matter, 2000, 12, 8221-8229.	1.8	41
41	Bragg diffraction from indium phosphide infilled fcc silica colloidal crystals. Physical Review B, 1999, 59, 1563-1566.	3.2	93
42	Optical properties of self-assembled arrays of InP quantum wires confined in nanotubes of chrysotile asbestos. Journal of Applied Physics, 1997, 82, 380-385.	2.5	32
43	Enhancement of the photonic gap of opal-based three-dimensional gratings. Applied Physics Letters, 1997, 70, 2091-2093.	3.3	83
44	Growth of II–VI compounds by metal–organic chemical vapour deposition. Propylene sulfide: a novel sulfur-containing precursor for MOCVD growth of ZnS. Journal of Materials Chemistry, 1995, 5, 853-854.	6.7	2
45	Tackling problems in the growth of ZnS/Se through precursor design. Advanced Materials for Optics and Electronics, 1994, 3, 163-169.	0.4	18
46	In-Situ mechanistic studies of the reaction of trimethylgallium and phosphine in zeolite H-Y. Advanced Materials for Optics and Electronics, 1993, 2, 313-318.	0.4	6
47	Characterization of ZnS grown by metal-organic chemical vapour deposition on GaAs(100) using t-butyl mercaptan and dimethylzinc. Advanced Materials for Optics and Electronics, 1992, 1, 43-46.	0.4	10
48	Controlling the sulphur content of ZnSe1â^'ySyepitaxial layers grown by metalorganic chemical vapor deposition using diethyl selenide, hydrogen sulphide, and dimethylzinc. Applied Physics Letters, 1991, 59, 2835-2837.	3.3	10
49	Structural and compositional integrity of latticeâ€matched ZnSe0.95S0.05on (100) orientated GaAs. Applied Physics Letters, 1987, 51, 809-810.	3.3	11
50	Metal Organic Chemical Vapour Deposition Growth of Epitaxial ZnSe/ZnS Multiple Layered Structures. Materials Research Society Symposia Proceedings, 1987, 102, 137.	0.1	1