Jianfeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3956810/publications.pdf

Version: 2024-02-01

67 papers 4,349 citations

126708 33 h-index 65 g-index

70 all docs

70 docs citations

70 times ranked

5402 citing authors

#	Article	IF	CITATIONS
1	A biodegradable magnesium alloy vascular stent structure: Design, optimisation and evaluation. Acta Biomaterialia, 2022, 142, 402-412.	4.1	20
2	A Constrained Assembly Strategy for High-Strength Natural Nanoclay Film. ACS Nano, 2022, 16, 6224-6232.	7.3	15
3	High-efficiency, self-grinding exfoliation of small graphene nanosheets from microcrystalline graphite driven by microbead milling as conductive additives. Science China Materials, 2022, 65, 2463-2471.	3.5	5
4	A scalable hydrogel processing route to high-strength, foldable clay-based artificial nacre. Composites Science and Technology, 2021, 201, 108543.	3.8	10
5	Total-conversion, high-concentration exfoliation of two-dimensional boron nitride by paste-based sand milling strategy for massively producing high-performance nanocomposites. Composites Science and Technology, 2021, 201, 108545.	3.8	11
6	Small molecule hydrogen-bonded toughen nacre-inspired montmorillonite-konjac glucomannan-glycerin film with superior mechanical, transparent and UV-blocking properties. Composites Part B: Engineering, 2021, 204, 108492.	5.9	26
7	Total conversion from graphite to few-layer graphene nanocomposite. Carbon Trends, 2021, 2, 100017.	1.4	5
8	Toward Largely Enhanced Toughness and Balanced Strength in PA1012/EPDM Blends via Synergistic Effect of Sacrificial Bonds and Network Structure. Macromolecular Materials and Engineering, 2021, 306, 2000813.	1.7	1
9	Improved mechanical properties of in situ microfibrillar polypropylene/polyamide6 composites through constructing strong interfacial adhesion. Polymers for Advanced Technologies, 2021, 32, 3343-3357.	1.6	5
10	Processing aramid nanofiber/modified graphene oxide hydrogel into ultrastrong nanocomposite film. Applied Surface Science, 2021, 545, 149004.	3.1	19
11	The Role of Astaxanthin on Chronic Diseases. Crystals, 2021, 11, 505.	1.0	18
12	Ultrahigh concentration and stable dispersion of graphite nanosheet paste as composite nanofillers for thermal management and electromagnetic shielding. Nano Select, 2021, 2, 2159-2167.	1.9	4
13	Ultrathin Titanium Carbide (MXene) Films for Highâ€Temperature Thermal Camouflage. Advanced Functional Materials, 2021, 31, 2101381.	7.8	118
14	Ti ₃ C ₂ T _x MXene-Decorated Nanoporous Polyethylene Textile for Passive and Active Personal Precision Heating. ACS Nano, 2021, 15, 11396-11405.	7.3	141
15	Influence of the second phase on protein adsorption on biodegradable Mg alloys' surfaces: Comparative experimental and molecular dynamics simulation studies. Acta Biomaterialia, 2021, 129, 323-332.	4.1	16
16	Bioinspired modified graphite film with superb mechanical and thermoconductive properties. Carbon, 2021, 181, 40-47.	5.4	21
17	Rapid Photothermal Responsive Conductive MXene Nanocomposite Hydrogels for Soft Manipulators and Sensitive Strain Sensors. Macromolecular Rapid Communications, 2021, 42, e2100499.	2.0	33
18	Ultrahigh concentration, single-layer of graphene paste as conductive additive for lithium-ion battery. Carbon Trends, 2021, 5, 100104.	1.4	6

#	Article	IF	CITATIONS
19	A mechanically robust all-solid-state supercapacitor based on a highly conductive double-network hydrogel electrolyte and Ti ₃ C ₂ T _{<i>x</i>>} MXene electrode with anti-freezing property. Journal of Materials Chemistry A, 2021, 9, 25073-25085.	5.2	25
20	Preparation of Biodegradable Mg/\hat{l}^2 -TCP Biofunctional Gradient Materials by Friction Stir Processing and Pulse Reverse Current Electrodeposition. Acta Metallurgica Sinica (English Letters), 2020, 33, 103-114.	1.5	6
21	A Bioinspired Ultratough Multifunctional Mica-Based Nanopaper with 3D Aramid Nanofiber Framework as an Electrical Insulating Material. ACS Nano, 2020, 14, 611-619.	7.3	85
22	Endothelial progenitor cells as the target for cardiovascular disease prediction, personalized prevention, and treatments: progressing beyond the state-of-the-art. EPMA Journal, 2020, 11, 629-643.	3.3	17
23	Atomic structure of <scp>Co_{92â^'<i>x</i>}B_{<i>x</i>}Ta₈</scp> glassy alloys studied by ab initio molecular dynamics simulations. International Journal of Quantum Chemistry, 2020, 120, e26406.	1.0	1
24	A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. Journal of Materials Chemistry B, 2020, 8, 11010-11020.	2.9	66
25	Freezing-Tolerant, Highly Sensitive Strain and Pressure Sensors Assembled from Ionic Conductive Hydrogels with Dynamic Cross-Links. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25334-25344.	4.0	189
26	Multifunctional MXene-Based Fireproof Electromagnetic Shielding Films with Exceptional Anisotropic Heat Dissipation Capability and Joule Heating Performance. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 27350-27360.	4.0	157
27	Co-Solvent Exfoliation of Hexagonal Boron Nitride: Effect of Raw Bulk Boron Nitride Size and Co-Solvent Composition. Nanomaterials, 2020, 10, 1035.	1.9	15
28	Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. Journal of Materials Chemistry A, 2020, 8, 12526-12537.	5.2	203
29	High-Loading Boron Nitride-Based Bio-Inspired Paper with Plastic-like Ductility and Metal-like Thermal Conductivity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13156-13164.	4.0	36
30	Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film. Composites Science and Technology, 2020, 189, 108021.	3.8	73
31	Unprecedentedly Tough, Foldingâ€Endurance, and Multifunctional Grapheneâ€Based Artificial Nacre with Predesigned 3D Nanofiber Network as Matrix. Advanced Functional Materials, 2019, 29, 1903876.	7.8	77
32	Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105498.	3.8	56
33	Advances in toughened polymer materials by structured rubber particles. Progress in Polymer Science, 2019, 98, 101160.	11.8	104
34	Role of poly(ethylene glycol) grafted silica nanoparticle shape in toughened PLA-matrix nanocomposites. Composites Part B: Engineering, 2019, 168, 398-405.	5.9	35
35	Ultrafast yet Controllable Dual-Responsive All-Carbon Actuators for Implementing Unusual Mechanical Movements. ACS Applied Materials & Interfaces, 2019, 11, 10218-10225.	4.0	47
36	Wettingâ€Induced Climbing for Transferring Interfacially Assembled Largeâ€Area Ultrathin Pristine Graphene Film. Advanced Materials, 2019, 31, e1806742.	11.1	24

#	Article	IF	Citations
37	Processing and properties of magnesium alloy micro-tubes for biodegradable vascular stents. Materials Science and Engineering C, 2018, 90, 504-513.	3.8	49
38	Ultrahigh Conductive Graphene Paper Based on Ballâ€Milling Exfoliated Graphene. Advanced Functional Materials, 2017, 27, 1700240.	7.8	241
39	Tunable, Fast, Robust Hydrogel Actuators Based on Evaporation-Programmed Heterogeneous Structures. Chemistry of Materials, 2017, 29, 9793-9801.	3.2	98
40	Conductingâ€Polymerâ€Based Materials for Electrochemical Energy Conversion and Storage. Advanced Materials, 2017, 29, 1703044.	11.1	88
41	A biomimetic ion-crosslinked layered double hydroxide/alginate hybrid film. RSC Advances, 2017, 7, 32601-32606.	1.7	11
42	Robust Underwater Oilâ€Repellent Material Inspired by Columnar Nacre. Advanced Materials, 2016, 28, 8505-8510.	11.1	96
43	A strong, underwater superoleophobic PNIPAM–clay nanocomposite hydrogel. Journal of Materials Chemistry A, 2016, 4, 12884-12888.	5.2	64
44	Hierarchical Layered Heterogeneous Graphene-poly(<i>N</i> -isopropylacrylamide)-clay Hydrogels with Superior Modulus, Strength, and Toughness. ACS Nano, 2016, 10, 413-420.	7.3	57
45	Antibodyâ€Modified Reduced Graphene Oxide Films with Extreme Sensitivity to Circulating Tumor Cells. Advanced Materials, 2015, 27, 6848-6854.	11.1	126
46	Superwettability Controlled Overflow. Advanced Materials, 2015, 27, 1745-1750.	11.1	49
47	Nanoasperity: Structure Origin of Nacre-Inspired Nanocomposites. ACS Nano, 2015, 9, 2167-2172.	7.3	68
48	Stable underwater superoleophobic and low adhesive polypyrrole nanowire mesh in highly corrosive environments. Soft Matter, 2015 , 11 , 4290 - 4294 .	1.2	19
49	Bioinspired Hierarchical Alumina–Graphene Oxide–Poly(vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness. ACS Applied Materials & Strength and Toughness.	4.0	82
50	Synergistic Toughening of Bioinspired Poly(vinyl alcohol)–Clay–Nanofibrillar Cellulose Artificial Nacre. ACS Nano, 2014, 8, 2739-2745.	7.3	282
51	Bioinspired Nacre-like Heparin/Layered Double Hydroxide Film with Superior Mechanical, Fire-Shielding, and UV-Blocking Properties. Industrial & Engineering Chemistry Research, 2014, 53, 3820-3826.	1.8	37
52	Effects of minor Cu addition on glass-forming ability and magnetic properties of FePCBCu alloys with high saturation magnetization. Philosophical Magazine, 2013, 93, 2182-2189.	0.7	32
53	Understanding the relationship of performance with nanofiller content in the biomimetic layered nanocomposites. Nanoscale, 2013, 5, 6356.	2.8	97
54	Biocompatible Zr-Al-Fe bulk metallic glasses with large plasticity. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1664-1669.	2.0	22

#	Article	IF	CITATIONS
55	Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chemical Society Reviews, 2012, 41, 1111-1129.	18.7	454
56	A Strong Bioâ€Inspired Layered PNIPAM–Clay Nanocomposite Hydrogel. Angewandte Chemie - International Edition, 2012, 51, 4676-4680.	7.2	198
57	Inside Cover: A Strong Bio-Inspired Layered PNIPAM-Clay Nanocomposite Hydrogel (Angew. Chem. Int.) Tj ETQq1	1 0,78431 7.2	4 rgBT /Ove
58	Functionalization of Multiwalled Carbon Nanotubes with Thermotropic Liquid-Crystalline Polymer and Thermal Properties of Composites. Industrial & Engineering Chemistry Research, 2011, 50, 891-897.	1.8	13
59	Centimeter-scale-diameter Co-based bulk metallic glasses with fracture strength exceeding 5000 MPa. Science Bulletin, 2011, 56, 3972-3977.	1.7	31
60	Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity. Journal of Materials Research, 2011, 26, 2072-2079.	1.2	151
61	Compressibility and hardness of Co-based bulk metallic glass: A combined experimental and density functional theory study. Applied Physics Letters, 2011, 99, .	1.5	49
62	Mechanical and thermal properties of functionalized multiwalled carbon nanotubes and multiwalled carbon nanotube–polyurethane composites. Journal of Applied Polymer Science, 2009, 114, 3407-3413.	1.3	30
63	Concise route to styryl-modified multi-walled carbon nanotubes for polystyrene matrix and enhanced mechanical properties and thermal stability of composite. Materials Science & Diple Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 499, 469-475.	2.6	23
64	A Scalable Route to Highly Functionalized Multiâ€Walled Carbon Nanotubes on a Large Scale. Macromolecular Chemistry and Physics, 2008, 209, 846-853.	1.1	25
65	Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Materials Science & Droperties, Microstructure and Processing, 2008, 492, 236-242.	2.6	133
66	Microstructure and Mechanical Properties of Friction Stir Welded 1.5 GPa Martensitic High-Strength Steel Plates. Acta Metallurgica Sinica (English Letters), 0, , 1.	1.5	3
67	Friction Stir Processed High Purity Mg Coating on MgZnYNd Alloy with Improved Corrosion Resistance. Journal of Materials Engineering and Performance, 0, , 1.	1.2	0