Farag Malhat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/395649/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dissipation profile of sulfoxaflor on squash under Egyptian field conditions: a prelude to risk assessment. International Journal of Environmental Analytical Chemistry, 2023, 103, 3820-3834.	1.8	6
2	Dissipation behavior of the fungicide tebuconazole in strawberries using liquid chromatograph tandem mass spectrometry (LC-MS/MS), a dryland ecosystem–based study. International Journal of Environmental Analytical Chemistry, 2022, 102, 7394-7408.	1.8	5
3	Review of Contamination by Polycyclic Aromatic Hydrocarbons (PAHs) in Egyptian Aquatic Environment. Polycyclic Aromatic Compounds, 2021, 41, 1447-1458.	1.4	2
4	Dynamic distribution of azoxystrobin residues in strawberry (Fragaria x ananassa Duchesne) using liquid chromatography tandem mass spectrometry: Putative evaluation of dietary intake. International Journal of Environmental Analytical Chemistry, 2021, 101, 2479-2490.	1.8	3
5	Dissipation behavior of thiophanate-methyl in strawberry under open field condition in Egypt and consumer risk assessment. Environmental Science and Pollution Research, 2021, 28, 1029-1039.	2.7	14
6	A Preliminary Toxicology Study on Eco-friendly Control Target of Spodoptera frugiperda. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 295-301.	1.3	2
7	Comestible and temperature effects on the biological traits of fall armyworms, <scp><i>Spodoptera frugiperda</i></scp> . Entomological Research, 2021, 51, 487-498.	0.6	1
8	Dissipation behavior and dietary risk assessment of pyridaben in open field strawberries and cucumber under Egyptian cultivation conditions. Environmental Science and Pollution Research, 2021, 28, 60122-60129.	2.7	5
9	Full-length transcriptome analysis of <i>Spodoptera frugiperda</i> larval brain reveals detoxification genes. PeerJ, 2021, 9, e12069.	0.9	6
10	Investigation of the dissipation behaviour and exposure of spitotetramat, flonicamid, imidacloprid and pymetrozine in open field strawberries in Egypt. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2021, 38, 2128-2136.	1.1	7
11	Evaluation of dissipation, unit–unit-variability and terminal residue of etoxazole residues in strawberries from two different parts in Egypt. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2020, 15, 229-236.	0.5	8
12	Thiacloprid Residues in Green Onion (Allium cepa) Using Micro Liquid–Liquid Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Agricultural Research, 2020, 9, 340-348.	0.9	6
13	Residue behavior of etoxazole under field conditions in Egypt and estimation of processing factors during the production of strawberry juice and purée. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2020, 55, 712-718.	0.7	3
14	Magnitude of picoxystrobin residues in strawberry under Egyptian conditions: dissipation pattern and consumer risk assessment. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2020, 37, 973-982.	1.1	11
15	Thermal stress accelerates mercury chloride toxicity in Oreochromis niloticus via up-regulation of mercury bioaccumulation and HSP70 mRNA expression. Science of the Total Environment, 2020, 718, 137326.	3.9	40
16	Residues, dissipation and risk evaluation of spiroxamine in openâ€fieldâ€grown strawberries using liquid chromatography tandem mass spectrometry. Biomedical Chromatography, 2020, 34, e4836.	0.8	2
17	Portable rainfall simulator for plot-scale investigation of rainfall-runoff, and transport of sediment and pollutants. International Journal of Sediment Research, 2019, 34, 38-47.	1.8	26
18	Residue distribution and risk assessment of two macrocyclic lactone insecticides in green onion using micro-liquid-liquid extraction (MLLE) technique coupled with liquid chromatography tandem mass spectrometry. Environmental Monitoring and Assessment, 2019, 191, 584.	1.3	16

FARAG MALHAT

#	Article	IF	CITATIONS
19	Consumer safety evaluation of pyraclostrobin residues in strawberry using liquid chromatography tandem mass spectrometry (LC-MS/MS): An Egyptian profile. Regulatory Toxicology and Pharmacology, 2019, 108, 104450.	1.3	16
20	Buprofezin dissipation and safety assessment in open field cabbage and cauliflower using GC/ITMS employing an analyte protectant. Biomedical Chromatography, 2019, 33, e4492.	0.8	9
21	Efficient removal of pesticides and heavy metals from wastewater and the antimicrobial activity of f-MWCNTs/PVA nanocomposite film. Journal of Cleaner Production, 2019, 206, 315-325.	4.6	82
22	An MIP-AES study of heavy metals in Egyptian honey: Toxicity assessment and potential health hazards to consumers. Journal of Elementology, 2019, , .	0.0	3
23	Magnitude of cyantraniliprole residues in tomato following open field application: pre-harvest interval determination and risk assessment. Environmental Monitoring and Assessment, 2018, 190, 116.	1.3	24
24	Biochar-ammonium phosphate as an uncoated-slow release fertilizer in sandy soil. Biomass and Bioenergy, 2018, 117, 154-160.	2.9	60
25	Synthesis and utilization of poly (methylmethacrylate) nanocomposites based on modified montmorillonite. Arabian Journal of Chemistry, 2017, 10, 631-642.	2.3	39
26	Aspect of the degradation and adsorption kinetics of atrazine and metolachlor in andisol soil. Hellenic Plant Protection Journal, 2017, 10, 1-14.	0.4	4
27	Validation of QuEChERS based method for determination of fenitrothion residues in tomatoes by gas chromatography–flame photometric detector: Decline pattern and risk assessment. Food Chemistry, 2017, 229, 814-819.	4.2	44
28	PCPFâ€M model for simulating the fate andÂtransport of pesticides and their metabolites inÂrice paddy field. Pest Management Science, 2017, 73, 2429-2438.	1.7	5
29	Polycyclic aromatic hydrocarbon residues in blood serum and human milk in Egypt, A pilot case study. Human and Ecological Risk Assessment (HERA), 2017, 23, 1573-1584.	1.7	8
30	Persistence of metalaxyl residues on tomato fruit using high performance liquid chromatography and QuEChERS methodology. Arabian Journal of Chemistry, 2017, 10, S765-S768.	2.3	35
31	Dissipation pattern and risk assessment of the synthetic pyrethroid Lambda-cyhalothrin applied on tomatoes under dryland conditions, a case study. International Journal of Food Contamination, 2016, 3, .	2.2	20
32	Dissipation dynamic, residue distribution and processing factor of hexythiazox in strawberry fruits under open field condition. Food Chemistry, 2016, 196, 1108-1116.	4.2	71
33	Residue Levels, Profiles, Emission Source and Daily Intake of Polycyclic Aromatic Hydrocarbons Based on Smoked Fish Consumption, An Egyptian Pilot Study. Polycyclic Aromatic Compounds, 2016, 36, 183-196.	1.4	14
34	Degradation profile and safety evaluation of methomyl residues in tomato and soil. Hellenic Plant Protection Journal, 2015, 8, 55-62.	0.4	11
35	Residual Pattern and Dietary Intake of Iprodione on Grapes under Egyptian Field Conditions: A Prelude to Risk Assessment Profile. Human and Ecological Risk Assessment (HERA), 2015, 21, 265-279.	1.7	18
36	Degradation profile of azoxystrobin in Andisol soil: laboratory incubation. Toxicological and Environmental Chemistry, 2015, , 1-12.	0.6	4

FARAG MALHAT

#	Article	IF	CITATIONS
37	Validation of QuEChERS-based method for determination of flusilazole residues in grape by high-performance liquid chromatography with photodiode array detector. Toxicological and Environmental Chemistry, 2015, 97, 1137-1144.	0.6	2
38	Potential impacts of seasonal variation on atrazine and metolachlor persistence in andisol soil. Environmental Monitoring and Assessment, 2015, 187, 760.	1.3	19
39	Health Hazard Assessment of Pyridaben Residues in Egyptian Strawberries. Human and Ecological Risk Assessment (HERA), 2015, 21, 241-249.	1.7	11
40	Residues of organochlorine and synthetic pyrethroid pesticides in honey, an indicator of ambient environment, a pilot study. Chemosphere, 2015, 120, 457-461.	4.2	82
41	Hazard assessment of the neonicotinoid insecticide thiamethoxam residues in tomato: a prelude to risk assessment profile. Toxicological and Environmental Chemistry, 2014, 96, 318-327.	0.6	14
42	Field dissipation and health hazard assessment of Fenhexamid on Egyptian grapes. Toxicological and Environmental Chemistry, 2014, 96, 722-729.	0.6	19
43	Dissipation kinetics of novaluron in tomato, an arid ecosystem pilot study. Toxicological and Environmental Chemistry, 2014, 96, 41-47.	0.6	17
44	Residues, dissipation and safety evaluation of chromafenozide in strawberry under open field conditions. Food Chemistry, 2014, 152, 18-22.	4.2	59
45	Selective Removal of Heavy Metals from Drinking Water Using Titanium Dioxide Nanowire. Macromolecular Symposia, 2014, 337, 96-101.	0.4	45
46	Determination of etoxazole residues in fruits and vegetables by SPE clean-up and HPLC-DAD. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2013, 48, 331-335.	0.7	17
47	Preparation and Utilization of Polystyrene Nanocomposites Based on TiO ₂ Nanowires. Polymer-Plastics Technology and Engineering, 2013, 52, 228-235.	1.9	22
48	Simultaneous Determination of Spinetoram Residues in Tomato by High Performance Liquid Chromatography Combined with QuEChERS Method. Bulletin of Environmental Contamination and Toxicology, 2013, 90, 222-226.	1.3	21
49	Residues and dissipation of kresoxim methyl in apple under field condition. Food Chemistry, 2013, 140, 371-374.	4.2	32
50	Residues and dissipation of the pesticide emamectin benzoate under Egyptian field condition: a case study. Toxicological and Environmental Chemistry, 2013, 95, 1099-1107.	0.6	10
51	Residues, half-life times, dissipation, and safety evaluation of the acaricide fenpyroximate applied on grapes. Toxicological and Environmental Chemistry, 2013, 95, 1309-1317.	0.6	11
52	Residue and Dissipation Dynamics of Lufenuron in Tomato Fruit Using QuEChERS Methodology. Bulletin of Environmental Contamination and Toxicology, 2012, 89, 1037-1039.	1.3	8
53	Determination of Chlorantraniliprole Residues in Grape by High-Performance Liquid Chromatography. Food Analytical Methods, 2012, 5, 1492-1496.	1.3	54
54	Contamination of Cows Milk by Heavy Metal in Egypt. Bulletin of Environmental Contamination and Toxicology, 2012, 88, 611-613.	1.3	62

FARAG MALHAT

#	Article	IF	CITATIONS
55	Metals in Water from the River Nile Tributaries in Egypt. Bulletin of Environmental Contamination and Toxicology, 2012, 88, 594-596.	1.3	9
56	Estimation of Etofenprox Residues in Tomato Fruits by QuEChERS Methodology and HPLC–DAD. Bulletin of Environmental Contamination and Toxicology, 2012, 88, 891-893.	1.3	11
57	Dissipation of Chlorantraniliprole in Tomato Fruits and Soil. Bulletin of Environmental Contamination and Toxicology, 2012, 88, 349-351.	1.3	58
58	Distribution of Heavy Metal Residues in Fish from the River Nile Tributaries in Egypt. Bulletin of Environmental Contamination and Toxicology, 2011, 87, 163-165.	1.3	13
59	Level and Fate of Etoxazole in Green Bean (Phaseolus vulgaris). Bulletin of Environmental Contamination and Toxicology, 2011, 87, 190-193.	1.3	20
60	Organophosphorus Pesticides Residues in Fish Samples from the River Nile Tributaries in Egypt. Bulletin of Environmental Contamination and Toxicology, 2011, 87, 689-692.	1.3	32
61	Dissipation kinetics and risk assessment of pyraclostrobin after open field application in cucumber under Egyptian conditions. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 0, , 1.	0.5	0