Alexandra Navrotsky

List of Publications by Citations

Source: https://exaly.com/author-pdf/3956460/alexandra-navrotsky-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

607 24,189 129 71 h-index g-index citations papers 26,620 633 7.36 5.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
607	CRYSTAL GROWTH. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. <i>Science</i> , 2015 , 349, aaa6760	33.3	1035
606	Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas. <i>Science</i> , 1997 , 277, 788-791	33.3	759
605	Size-driven structural and thermodynamic complexity in iron oxides. <i>Science</i> , 2008 , 319, 1635-8	33.3	544
604	The thermodynamics of cation distributions in simple spinels. <i>Journal of Inorganic and Nuclear Chemistry</i> , 1967 , 29, 2701-2714		476
603	Energetics of nanocrystalline TiO2. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99 Suppl 2, 6476-81	11.5	442
602	Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application. <i>Journal of Geophysical Research</i> , 1989 , 94, 15671-15685		440
601	Progress and new directions in high temperature calorimetry revisited. <i>Physics and Chemistry of Minerals</i> , 1997 , 24, 222-241	1.6	424
600	Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12096-101	11.5	403
599	Progress and new directions in high temperature calorimetry. <i>Physics and Chemistry of Minerals</i> , 1977 , 2, 89-104	1.6	380
598	Nuclear fuel in a reactor accident. <i>Science</i> , 2012 , 335, 1184-8	33.3	328
597	Radiation Effects in Glasses Used for Immobilization of High-level Waste and Plutonium Disposition. <i>Journal of Materials Research</i> , 1997 , 12, 1948-1978	2.5	323
596	Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 16438-43	11.5	318
595	Thermodynamics of formation of simple spinels. <i>Journal of Inorganic and Nuclear Chemistry</i> , 1968 , 30, 479-498		270
594	Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 7717-21	11.5	256
593	Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria. <i>Science</i> , 2010 , 330, 199-201	33.3	252
592	Materials Science of High-Level Nuclear Waste Immobilization. MRS Bulletin, 2009, 34, 46-53	3.2	233
591	Energy Crossovers in Nanocrystalline Zirconia. <i>Journal of the American Ceramic Society</i> , 2004 , 88, 160-1	6 7.8	224

590	Effects of Increased Surface Area and Chemisorbed H2O on the Relative Stability of Nanocrystalline EAl2O3 and ⊞-Al2O3. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 603-613	3.4	223	
589	Energetics of nanoparticle oxides: interplay between surface energy and polymorphism Geochemical Transactions, 2003 , 4, 1	3	223	
588	Polymer-derived SiCN and SiOC ceramics Istructure and energetics at the nanoscale. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3826	13	207	
587	Thermochemistry of rare-earth orthophosphates. <i>Journal of Materials Research</i> , 2001 , 16, 2623-2633	2.5	196	
586	Stability of peroxide-containing uranyl minerals. Science, 2003, 302, 1191-3	33.3	184	
585	Thermochemistry of Pure-Silica Zeolites. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 10001-10011	3.4	175	
584	Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability. <i>American Mineralogist</i> , 2009 , 94, 236-243	2.9	172	
583	Thermochemical evidence for strong iodine chemisorption by ZIF-8. <i>Journal of the American Chemical Society</i> , 2013 , 135, 16256-9	16.4	163	
582	Negative Pressure-Temperature Slopes for Reactions Formign MgSiO3 Perovskite from Calorimetry. <i>Science</i> , 1990 , 249, 1275-8	33.3	162	
581	TiO2 Stability Landscape: Polymorphism, Surface Energy, and Bound Water Energetics. <i>Chemistry of Materials</i> , 2006 , 18, 6324-6332	9.6	161	
580	Structural and thermodynamic limits of layer thickness in 2D halide perovskites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 58-66	11.5	152	
579	Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 2343-50	3.4	150	
578	Formation enthalpies of rare earth titanate pyrochlores. Journal of Solid State Chemistry, 2004, 177, 18	358 .3 86	6139	
577	Thermochemistry of microporous and mesoporous materials. <i>Chemical Reviews</i> , 2009 , 109, 3885-902	68.1	137	
576	Nanoscale effects on thermodynamics and phase equilibria in oxide systems. <i>ChemPhysChem</i> , 2011 , 12, 2207-15	3.2	135	
575	Crystallization in hafnia- and zirconia-based systems. <i>Physica Status Solidi (B): Basic Research</i> , 2004 , 241, 2268-2278	1.3	134	
574	Direct measurements of water adsorption enthalpy on hafnia and zirconia. <i>Applied Physics Letters</i> , 2005 , 87, 164103	3.4	134	
573	Progress and New Directions in Calorimetry: A 2014 Perspective. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 3349-3359	3.8	133	

572	Thermochemistry of glasses and liquids in the systems CaMgSi2O6-CaAl2Si2O8-NaAlSi3O8, SiO2-CaAl2Si2O8-NaAlSi3O8 and SiO2-Al2O3-CaO-Na2O. <i>Geochimica Et Cosmochimica Acta</i> , 1980 , 44, 1409-1423	5.5	131
571	29Si and 13C Solid-State NMR Spectroscopic Study of Nanometer-Scale Structure and Mass Fractal Characteristics of Amorphous Polymer Derived Silicon Oxycarbide Ceramics. <i>Chemistry of Materials</i> , 2010 , 22, 6221-6228	9.6	130
570	Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework. <i>Journal of the American Chemical Society</i> , 2013 , 135, 6790-3	16.4	120
569	Thermochemistry of Charge-Coupled Substitutions in Silicate Glasses: The Systems Ml/nn+ AlO2-SiO2 (M = Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Pb). <i>Journal of the American Ceramic Society</i> , 1984 , 67, 606-610	3.8	118
568	Enthalpy of the Anatase-Rutile Transformation. <i>Journal of the American Ceramic Society</i> , 1967 , 50, 626-6	5 3 68	118
567	Thermodynamic Properties of Manganese Oxides. <i>Journal of the American Ceramic Society</i> , 1996 , 79, 1761-1768	3.8	117
566	Quantitative correlations of deviations from ideality in binary and pseudobinary solid solutions. <i>Journal of Solid State Chemistry</i> , 1983 , 46, 1-22	3.3	113
565	Energetics and Crystal Chemical Systematics among Ilmenite, Lithium Niobate, and Perovskite Structures. <i>Chemistry of Materials</i> , 1998 , 10, 2787-2793	9.6	112
564	A Calorimetric Study of the Lanthanide Aluminum Oxides and the Lanthanide Gallium Oxides: Stability of the Perovskites and the Garnets. <i>Journal of Solid State Chemistry</i> , 1998 , 141, 424-436	3.3	111
563	Uranyl peroxide enhanced nuclear fuel corrosion in seawater. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 1874-7	11.5	109
562	Thermochemical insights into refractory ceramic materials based on oxides with large tetravalent cations. <i>Journal of Materials Chemistry</i> , 2005 , 15, 1883		109
561	Amorphous Alumina Nanoparticles: Structure, Surface Energy, and Thermodynamic Phase Stability. Journal of Physical Chemistry C, 2013 , 117, 17123-17130	3.8	106
560	Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (H-FeOOH), lepidocrocite (HeOOH), and maghemite (He2O3). <i>American Mineralogist</i> , 2003 , 88, 855-859	2.9	105
559	Energetics of compounds (A2+B4+O3) with the perovskite structure. <i>Journal of Solid State Chemistry</i> , 1988 , 72, 244-256	3.3	103
558	Thermodynamically Stable SixOyCz Polymer-Like Amorphous Ceramics. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 3213-3219	3.8	101
557	Study on Synthesis of TPA-Silicalite-1 from Initially Clear Solutions of Various Base Concentrations by in Situ Calorimetry, Potentiometry, and SAXS. <i>Chemistry of Materials</i> , 2004 , 16, 210-219	9.6	98
556	Thermochemistry of zeolitic imidazolate frameworks of varying porosity. <i>Journal of the American Chemical Society</i> , 2013 , 135, 598-601	16.4	97
555	Enthalpy of formation of LiNiO2, LiCoO2 and their solid solution, LiNi1⊠CoxO2. <i>Solid State Ionics</i> , 2004 , 166, 167-173	3.3	93

(2004-2009)

554	Surface Enthalpy, Enthalpy of Water Adsorption, and Phase Stability in Nanocrystalline Monoclinic Zirconia. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 133-140	3.8	90	
553	Monoclinic to tetragonal transformations in hafnia and zirconia: A combined calorimetric and density functional study. <i>Physical Review B</i> , 2009 , 80,	3.3	89	
552	Thermochemistry of Sodium Borosilicate Glasses. <i>Journal of the American Ceramic Society</i> , 1985 , 68, 31	4-389	88	
551	Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 8801-6	11.5	86	
550	Structure, Heat Capacity, and High-Temperature Thermal Properties of Yb14Mn1\(\text{MAlxSb11}\). Chemistry of Materials, 2009 , 21, 1354-1360	9.6	84	
549	Surface Energy and Thermodynamic Stability of EAlumina: Effect of Dopants and Water. <i>Chemistry of Materials</i> , 2006 , 18, 1867-1872	9.6	84	
548	MANTLE GEOCHEMISTRY:Enhanced: A Lesson from Ceramics. <i>Science</i> , 1999 , 284, 1788-1789	33.3	84	
547	Vitreous forsterite (Mg2SiO4): Synthesis, structure, and thermochemistry. <i>Geophysical Research Letters</i> , 2001 , 28, 2517-2520	4.9	83	
546	Noble Gas Adsorption in Copper Trimesate, HKUST-1: An Experimental and Computational Study. Journal of Physical Chemistry C, 2013 , 117, 20116-20126	3.8	80	
545	Thermodynamics of Pure-Silica Molecular Sieve Synthesis. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 3629-3638	3.4	80	
544	Possible presence of high-pressure ice in cold subducting slabs. <i>Nature</i> , 2000 , 408, 844-7	50.4	80	
543	Structural Evolution of Alkoxide Silica Gels to Glass: Effect of Catalyst pH. <i>Journal of the American Ceramic Society</i> , 1993 , 76, 2571-2582	3.8	79	
542	Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags. <i>Environmental Science & Environmental &</i>	10.3	77	
541	Energetics of Bulk and Nano-Akaganeite, #FeOOH: Enthalpy of Formation, Surface Enthalpy, and Enthalpy of Water Adsorption. <i>Chemistry of Materials</i> , 2006 , 18, 1830-1838	9.6	77	
540	Energetics of binary iron nitrides. <i>Solid State Sciences</i> , 2000 , 2, 457-462	3.4	74	
539	Energetics of Cubic and Monoclinic Yttrium Oxide Polymorphs: Phase Transitions, Surface Enthalpies, and Stability at the Nanoscale. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 932-938	3.8	73	
538	Enthalpies of formation of Ce-pyrochlore, Ca0.93Ce1.00Ti2.035O7.00, U-pyrochlore, Ca1.46U4+0.23U6+0.46Ti1.85O7.00 and Gd-pyrochlore, Gd2Ti2O7: three materials relevant to the proposed waste form for excess weapons plutonium. <i>Journal of Nuclear Materials</i> , 2002 , 303, 226-239	3.3	73	
537	Effect of La and Y on Crystallization Temperatures of Hafnia and Zirconia. <i>Journal of Materials Research</i> , 2004 , 19, 693-696	2.5	72	

536	Grain Growth-Controlled Giant Permittivity in Soft Chemistry CaCu3Ti4O12 Ceramics. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 485-489	3.8	71
535	The assessment of thermodynamic parameters in the Al2O3-Y2O3 system and phase relations in the Y-Al-O system. <i>Scandinavian Journal of Metallurgy</i> , 2001 , 30, 175-183		71
534	Thermodynamics of solid solution formation in NiO?MgO and NiO?ZnO. <i>Journal of Solid State Chemistry</i> , 1981 , 38, 264-276	3.3	70
533	Enthalpies of formation of LaMO3 perovskites (M = Cr, Fe, Co, and Ni). <i>Journal of Materials Research</i> , 2005 , 20, 191-200	2.5	69
532	Thermodynamics of formation of the silicates and germanates of some divalent transition metals and of magnesium. <i>Journal of Inorganic and Nuclear Chemistry</i> , 1971 , 33, 4035-4050		69
531	Energetics of formation and hydration of ion-exchanged zeolite Y. <i>Microporous and Mesoporous Materials</i> , 2000 , 37, 175-186	5.3	68
530	Thermodynamics of manganese oxides: Effects of particle size and hydration on oxidation-reduction equilibria among hausmannite, bixbyite, and pyrolusite. <i>American Mineralogist</i> , 2012 , 97, 1291-1298	2.9	66
529	Surface Enthalpies of Nanophase ZnO with Different Morphologies. <i>Chemistry of Materials</i> , 2007 , 19, 5687-5693	9.6	66
528	Enthalpy of formation of cubic yttria-stabilized zirconia. <i>Journal of Materials Research</i> , 2003 , 18, 908-91	82.5	66
527	Experimental and Theoretical Evaluation of the Stability of True MOF Polymorphs Explains Their Mechanochemical Interconversions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7952-7957	16.4	65
526	Thermochemistry of lanthanum zirconate pyrochlore. <i>Journal of Materials Research</i> , 2009 , 24, 3350-335	57 2.5	65
525	Enthalpies of formation of LaBO3 perovskites (B = Al, Ga, Sc, and In). <i>Journal of Materials Research</i> , 2003 , 18, 2501-2508	2.5	65
524	Nanostructure and Energetics of Carbon-Rich SiCN Ceramics Derived from Polysilylcarbodiimides: Role of the Nanodomain Interfaces. <i>Chemistry of Materials</i> , 2012 , 24, 1181-1191	9.6	64
523	Thermodynamics of Fe oxides: Part I. Entropy at standard temperature and pressure and heat capacity of goethite (⊞-FeOOH), lepidocrocite (ŒeOOH), and maghemite (Œe2O3). <i>American Mineralogist</i> , 2003 , 88, 846-854	2.9	63
522	Calorimetric Measurement of Surface and Interface Enthalpies of Yttria-Stabilized Zirconia (YSZ). <i>Chemistry of Materials</i> , 2010 , 22, 2937-2945	9.6	59
521	Enthalpy of Water Adsorption and Surface Enthalpy of Goethite (⊞-FeOOH) and Hematite (⊞-Fe2O3). <i>Chemistry of Materials</i> , 2007 , 19, 825-833	9.6	58
520	Thermochemistry of La1-xSrxFeO3-Esolid Solutions (0.0 lk 🗓 .0, 0.0 🕮 .5). <i>Chemistry of Materials</i> , 2005 , 17, 2197-2207	9.6	58
519	Enthalpy of Formation of Gallium Nitride. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 4060-4063	3.4	58

(2015-2012)

518	Experimental Approaches to the Thermodynamics of Ceramics Above 1500°C. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 1463-1482	3.8	57	
517	In Situ Calorimetric Study of the Growth of Silica TPA-MFI Crystals from an Initially Clear Solution. <i>Chemistry of Materials</i> , 2002 , 14, 2803-2811	9.6	57	
516	Molar heat capacity and thermodynamic functions for CaTiO3. <i>Journal of Chemical Thermodynamics</i> , 1999 , 31, 1573-1583	2.9	57	
515	Nickel Solubility and Precipitation in Soils: A Thermodynamic Study. <i>Clays and Clay Minerals</i> , 2006 , 54, 153-164	2.1	56	
514	Thermodynamic properties, low-temperature heat-capacity anomalies, and single-crystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6. <i>Physics and Chemistry of Minerals</i> , 2004 , 31, 518-531	1.6	56	
513	Physics and Chemistry of Earth Materials 1994 ,		56	
512	Thermochemistry of Hydrotalcite-like Phases Intercalated with CO32-, NO3-, Cl-, I-, and ReO4 <i>Chemistry of Materials</i> , 2005 , 17, 2455-2459	9.6	55	
511	Thermodynamics of formation of coffinite, USiO4. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 6551-5	11.5	54	
510	Thermochemistry of the alkali rare-earth double phosphates, A3RE(PO4)2. <i>Journal of Materials Research</i> , 2004 , 19, 2165-2175	2.5	54	
509	Thermodynamics of formation for zirconolite (CaZrTi2O7) fromT=298.15 K toT=1500 K. <i>Journal of Chemical Thermodynamics</i> , 1999 , 31, 229-243	2.9	54	
508	Thermochemistry and phase equilibria in calcium zeolites. <i>American Mineralogist</i> , 1996 , 81, 658-667	2.9	54	
507	Thermochemistry of jarosite-alunite and natrojarosite-natroalunite solid solutions. <i>Geochimica Et Cosmochimica Acta</i> , 2004 , 68, 2197-2205	5.5	53	
506	Energetics, Structures, and Phase Transitions of Cubic and Orthorhombic Cesium Lead Iodide (CsPbI) Polymorphs. <i>Journal of the American Chemical Society</i> , 2019 , 141, 14501-14504	16.4	52	
505	Thermodynamics of solid electrolytes and related oxide ceramics based on the fluorite structure. Journal of Materials Chemistry, 2010 , 20, 10577		52	
504	Prototype Sandia Octahedral Molecular Sieve (SOMS) Na2Nb2O6[H2O: Synthesis, Structure and Thermodynamic Stability. <i>Chemistry of Materials</i> , 2004 , 16, 2034-2040	9.6	52	
503	LiMO2 (M=Mn, Fe, and Co): Energetics, polymorphism and phase transformation. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 1230-1240	3.3	52	
502	Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN. <i>Journal of Materials Research</i> , 2001 , 16, 2824-2831	2.5	52	
501	Thermodynamics of solid phases containing rare earth oxides. <i>Journal of Chemical Thermodynamics</i> , 2015 , 88, 126-141	2.9	50	

500	Kinetic Model for TiO2 Polymorphic Transformation from Anatase to Rutile. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 250-255	3.8	50
499	Dynamics of water confined on a TiO2 (anatase) surface. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 125	8 <u>4</u> 88	50
498	Enthalpy of formation of cubic yttria-stabilized hafnia. <i>Journal of Materials Research</i> , 2004 , 19, 1855-186	5 1 .5	50
497	Thermochemical study of calcium zeolitesBeulandite and stilbite. <i>American Mineralogist</i> , 2001 , 86, 448-4	1 5 5)	50
496	Activity-composition relations in the systems CoO?ZnO and NiO?ZnO at 1050°C. <i>Journal of Inorganic and Nuclear Chemistry</i> , 1971 , 33, 35-47		50
495	Energetics of metastudtite and implications for nuclear waste alteration. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17737-42	11.5	49
494	Enthalpies of formation of U-, Th-, Ce-brannerite: implications for plutonium immobilization. <i>Journal of Nuclear Materials</i> , 2003 , 320, 231-244	3.3	49
493	Silicon nitride: Enthalpy of formation of the \Box - and \Box -polymorphs and the effect of C and O impurities. <i>Journal of Materials Research</i> , 1999 , 14, 1959-1968	2.5	49
492	Enthalpy of Formation of Carbon-Rich Polymer-Derived Amorphous SiCN Ceramics. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 3349-3354	3.8	48
491	Polymer-Derived Ultra-High Temperature Ceramics (UHTCs) and Related Materials. <i>Advanced Engineering Materials</i> , 2019 , 21, 1900269	3.5	47
490	Thermochemical study of trivalent-doped ceria systems: CeO2MO1.5 (M = La, Gd, and Y). <i>Journal of Materials Research</i> , 2006 , 21, 3242-3251	2.5	47
489	High-temperature calorimetry of zirconia: Heat capacity and thermodynamics of the monoclinicEetragonal phase transition. <i>Journal of Chemical Thermodynamics</i> , 2006 , 38, 211-223	2.9	47
488	Enthalpies of formation of lanthanide oxyapatite phases. <i>Journal of Materials Research</i> , 2001 , 16, 2780-7	2 <i>7.</i> §3	47
487	MOF-5: enthalpy of formation and energy landscape of porous materials. <i>Journal of the American Chemical Society</i> , 2011 , 133, 9184-7	16.4	46
486	Calorimetry of nanoparticles, surfaces, interfaces, thin films, and multilayers. <i>Journal of Chemical Thermodynamics</i> , 2007 , 39, 1-9	2.9	46
485	Energetics of CO2 Adsorption on MgAl Layered Double Hydroxides and Related Mixed Metal Oxides. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 29836-29844	3.8	45
484	Fluorite-pyrochlore transformation in Eu2Zr2O7direct calorimetric measurement of phase transition, formation and surface enthalpies. <i>RSC Advances</i> , 2012 , 2, 3328	3.7	45
483	Nanoceria Energetics of Surfaces, Interfaces and Water Adsorption. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 3992-3999	3.8	45

(2009-2009)

482	Inelastic neutron scattering study of confined surface water on rutile nanoparticles. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 2796-800	2.8	45
481	Perovskite Solid Solutions along the NaNbO3BrTiO3 Join: Phase Transitions, Formation Enthalpies, and Implications for General Perovskite Energetics. <i>Chemistry of Materials</i> , 2005 , 17, 1880-18	386 386	45
480	Early-Stage Reactions in Synthesis of TPABilicalite-1: Studies by in Situ Calorimetry, SAXS, and pH Measurements. <i>Chemistry of Materials</i> , 2004 , 16, 3682-3687	9.6	45
479	Calorimetric Study of Nickel Molybdate: Heat Capacity, Enthalpy, and Gibbs Energy of Formation. Journal of the American Ceramic Society, 2003 , 86, 1927-1932	3.8	45
478	Tailoring Mesoporous FAl2O3 Properties by Transition Metal Doping: A Combined Experimental and Computational Study. <i>Chemistry of Materials</i> , 2017 , 29, 1338-1349	9.6	44
477	Amorphous iron (II) carbonate: Crystallization energetics and comparison to other carbonate minerals related to CO2 sequestration. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 87, 61-68	5.5	44
476	Energetics of Ternary Nitrides: LiCaInN and CaIIaN Systems. <i>Chemistry of Materials</i> , 1997 , 9, 1538-1546	9.6	44
475	Energetics of anhydrite, barite, celestine, and anglesite: a high-temperature and differential scanning calorimetry study. <i>Geochimica Et Cosmochimica Acta</i> , 2002 , 66, 1839-1850	5.5	44
474	Thermochemistry of Lanthana- and Yttria-Doped Thoria. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 4142-4147	3.8	43
473	Energetics of Defect Fluorite and Pyrochlore Phases in Lanthanum and Gadolinium Hafnates. Journal of the American Ceramic Society, 2007 , 90, 1171-1176	3.8	43
472	Energetics of SixOyCz Polymer-Derived Ceramics Prepared Under Varying Conditions. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 2969-2974	3.8	43
471	Formation enthalpy of ThSiO4 and enthalpy of the thorite -ihuttonite phase transition. <i>Geochimica Et Cosmochimica Acta</i> , 2005 , 69, 4675-4683	5.5	43
470	Thermodynamics and crystal chemistry of the hematitellorundum solid solution and the FeAlO3 phase. <i>Physics and Chemistry of Minerals</i> , 2002 , 29, 515-526	1.6	43
469	Direct Calorimetric Measurement of Enthalpies of Phase Transitions at 2000 12400 1C in Yttria and Zirconia. <i>International Studies Review</i> , 2005 , 7, 387-406	1	43
468	Energetics of X-ray-amorphous zirconia and the role of surface energy in its formation. <i>Journal of Non-Crystalline Solids</i> , 2000 , 262, 106-113	3.9	43
467	Enthalpy of Formation of Rare-earth Silicates Y2SiO5 and Yb2SiO5 and N-containing Silicate Y10(SiO4)6N2. <i>Journal of Materials Research</i> , 1999 , 14, 1181-1185	2.5	43
466	Effect of Precursor on Speciation and Nanostructure of SiBCN Polymer-Derived Ceramics. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 1651-1659	3.8	42
465	Energetics of oxide nanoparticles. <i>International Journal of Quantum Chemistry</i> , 2009 , 109, 2647-2657	2.1	42

464	Chabazite: Energetics of hydration, enthalpy of formation, and effect of cations on stability. American Mineralogist, 1999 , 84, 1870-1882	2.9	42
463	Thermodynamics of high entropy oxides. <i>Acta Materialia</i> , 2021 , 202, 1-21	8.4	42
462	Thermodynamic and Structural Properties of Sodium Lithium Niobate Solid Solutions. <i>Journal of the American Ceramic Society</i> , 2004 , 85, 379-384	3.8	41
461	Enthalpy of transformation of a high-pressure polymorph of titanium dioxide to the rutile modification. <i>Science</i> , 1967 , 158, 388-9	33.3	41
460	Cerium Substitution in Yttrium Iron Garnet: Valence State, Structure, and Energetics. <i>Chemistry of Materials</i> , 2014 , 26, 1133-1143	9.6	40
459	High temperature calorimetric studies of the heat of solution of La2O3 in silicate liquids. <i>Journal of Non-Crystalline Solids</i> , 2000 , 265, 238-251	3.9	40
458	Energetics of Rare Earth Manganese Perovskites A1NA?xMnO3 (A=La, Nd, Y and A?=Sr, La) Systems. <i>Journal of Solid State Chemistry</i> , 1999 , 145, 77-87	3.3	40
457	Energetics of CO2 and H2O adsorption on zinc oxide. <i>Langmuir</i> , 2014 , 30, 9091-7	4	39
456	Thermodynamic Control of Phase Composition and Crystallization of Metal-Modified Silicon Oxycarbides. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 1899-1903	3.8	39
455	Nanomaterials in the Environment, Agriculture, and Technology (NEAT). <i>Journal of Nanoparticle Research</i> , 2000 , 2, 321-323	2.3	39
454	Thermochemistry of the tremolite-edenite amphiboles using fluorine analogues, and applications to amphibole-plagioclase-quartz equilibria. <i>Contributions To Mineralogy and Petrology</i> , 1986 , 93, 18-32	3.5	39
453	Thermodynamics of metal-organic frameworks. <i>Journal of Solid State Chemistry</i> , 2015 , 223, 53-58	3.3	38
452	Trends in Structure and Thermodynamic Properties of Normal Rare Earth Carbonates and Rare Earth Hydroxycarbonates. <i>Minerals (Basel, Switzerland)</i> , 2018 , 8, 106	2.4	38
451	Thermochemistry of Metal Nitrides in the Ca/Zn/N System. <i>Chemistry - A European Journal</i> , 1996 , 2, 151	4 ₄ 18517	7 38
450	Enthalpy of formation and thermodynamic insights into yttrium doped BaZrO3. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17840-17847	13	37
449	Enthalpies of formation of rare earth orthovanadates, REVO4. <i>Journal of Solid State Chemistry</i> , 2007 , 180, 847-851	3.3	37
448	Thermochemistry of hydrotalcite-like phases in the MgO-Al2O3-CO2-H2O system: A determination of enthalpy, entropy, and free energy. <i>American Mineralogist</i> , 2005 , 90, 329-335	2.9	37
447	Oxide melt solution calorimetry of rare earth oxides. <i>Magyar Apr</i> l <i>ad K</i> l <i>lem</i> b <i>yek</i> , 2002 , 69, 751-771	О	37

446	Aluminum in magnesium silicate perovskite: Formation, structure, and energetics of magnesium-rich defect solid solutions. <i>Journal of Geophysical Research</i> , 2003 , 108,		37
445	Surface Enthalpy of Boehmite. <i>Clays and Clay Minerals</i> , 2000 , 48, 699-707	2.1	37
444	Thermochemistry of nanodiamond terminated by oxygen containing functional groups. <i>Carbon</i> , 2014 , 80, 544-550	10.4	36
443	Thermodynamics of the magnetite-ulv pinel (Fe3O4-Fe2TiO4) solid solution. <i>American Mineralogist</i> , 2012 , 97, 1330-1338	2.9	36
442	A correlation between the ionic conductivities and the formation enthalpies of trivalent-doped ceria at relatively low temperatures. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 8580-5	3.6	36
441	Systematics of Phase Transition and Mixing Energetics in Rare Earth, Yttrium, and Scandium Stabilized Zirconia and Hafnia. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 2143-2150	3.8	36
440	Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates. <i>American Mineralogist</i> , 2006 , 91, 658-666	2.9	36
439	Energetics of Mesoporous Silica: Investigation into Pore Size and Symmetry. <i>Chemistry of Materials</i> , 2005 , 17, 3772-3783	9.6	36
438	High-silica zeolites: a relationship between energetics and internal surface areas. <i>Microporous and Mesoporous Materials</i> , 2002 , 54, 1-13	5.3	36
437	A New Series of Oxygen-Deficient Perovskites in the NaTixNb1-xO3-0.5x System: Synthesis, Crystal Chemistry, and Energetics. <i>Chemistry of Materials</i> , 2003 , 15, 1872-1878	9.6	36
436	Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E1046-E1053	11.5	35
435	Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO3, U2O7, and UO4. <i>Journal of Nuclear Materials</i> , 2016 , 478, 158-163	3.3	35
434	Calorimetric measurements of energetics of defect interactions in fluorite oxides. <i>Faraday Discussions</i> , 2007 , 134, 171-80; discussion 215-33, 415-9	3.6	35
433	Thermochemistry of A2M3O12 negative thermal expansion materials. <i>Journal of Materials Research</i> , 2007 , 22, 2512-2521	2.5	35
432	Phonon, Spin-Wave, and Defect Contributions to the Low-Temperature Specific Heat of ⊞-FeOOH. <i>Journal of Low Temperature Physics</i> , 2003 , 130, 69-76	1.3	35
43 ¹	Synthesis, Structure Determination, and Aqueous Durability of Cs2ZrSi3O9. <i>Journal of the American Ceramic Society</i> , 2001 , 84, 153-160	3.8	35
430	Thermodynamic Properties of Uranyl Minerals: Constraints from Calorimetry and Solubility Measurements. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 607-613	3.9	34
429	Effect of boron on the thermodynamic stability of amorphous polymer-derived Si(B)CN ceramics. <i>Acta Materialia</i> , 2012 , 60, 4514-4522	8.4	34

428	Calorimetric determination of the enthalpies of formation of hydrotalcite-like solids and their use in the geochemical modeling of metals in natural waters. <i>Clays and Clay Minerals</i> , 2006 , 54, 409-417	2.1	34
427	Thermochemistry of rare-earth aluminate and aluminosilicate glasses. <i>Journal of Non-Crystalline Solids</i> , 2004 , 341, 141-151	3.9	34
426	Energetics of dissolution of Gd2O3 and HfO2 in sodium alumino-borosilicate glasses. <i>Journal of Non-Crystalline Solids</i> , 2001 , 296, 93-101	3.9	34
425	Hafnia: Energetics of thin films and nanoparticles. <i>Journal of Applied Physics</i> , 2010 , 107, 123514	2.5	33
424	Shape-dependent surface energetics of nanocrystalline TiO2. <i>Journal of Materials Chemistry</i> , 2010 , 20, 8639		33
423	Stabilizing Effect of Mg on the Energetics of the Li(Ni,Co,Al)O2Cathode Material for Lithium Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A302-A305	3.9	32
422	Direct Measurement of Surface Energy of CeO2 by Differential Scanning Calorimetry. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 3679-3682	3.8	32
421	Experimental Methodologies for Assessing the Surface Energy of Highly Hygroscopic Materials: The Case of Nanocrystalline Magnesia. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 23929-23935	3.8	32
420	Surface enthalpy and enthalpy of water adsorption of nanocrystalline tin dioxide: Thermodynamic insight on the sensing activity. <i>Journal of Materials Research</i> , 2011 , 26, 848-853	2.5	32
419	Oxide melt solution calorimetry of sulfides: Enthalpy of formation of sphalerite, galena, greenockite, and hawleyite. <i>American Mineralogist</i> , 2006 , 91, 400-403	2.9	32
418	The MgTiO3-FeTiO3join at high pressure and temperature. <i>American Mineralogist</i> , 1999 , 84, 1595-1603	2.9	32
417	Adsorption mechanism of alkyl hydroxamic acid onto bastnEite: Fundamental steps toward rational collector design for rare earth elements. <i>Journal of Colloid and Interface Science</i> , 2019 , 553, 210)-2:79	31
416	Thermochemistry of Multiferroic Organic-Inorganic Hybrid Perovskites [(CH3)2NH2][M(HCOO)3] (M = Mn, Co, Ni, and Zn). <i>Journal of the American Chemical Society</i> , 2015 , 137, 10351-6	16.4	31
415	Thermochemistry of La1⊠LnxPO4-monazites (Ln= Gd, Eu). <i>Journal of Chemical Thermodynamics</i> , 2017 , 105, 396-403	2.9	31
414	Enthalpies of formation of microporous titanosilicates ETS-4 and ETS-10. <i>Microporous and Mesoporous Materials</i> , 2001 , 47, 285-291	5.3	31
413	Thermochemistry of microporous silicotitanate phases in the Na2OIIs2OIiO2IIiO2II2O system. Journal of Materials Research, 2000 , 15, 815-823	2.5	31
412	Calculation of subsolidus phase relations in carbonates and pyroxenes. <i>Physics and Chemistry of Minerals</i> , 1977 , 1, 109-127	1.6	31
411	Enthalpies of transformation among the tetragonal, hexagonal, and glassy modifications of GeO2. Journal of Inorganic and Nuclear Chemistry, 1971, 33, 1119-1124		31

410	Insight on the Stability of Thick Layers in 2D Ruddlesden-Popper and Dion-Jacobson Lead Iodide Perovskites. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2523-2536	16.4	31	
409	Transparent Nanocrystalline Pure and Ca-Doped MgO by Spark Plasma Sintering of Anhydrous Nanoparticles. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 1185-1188	3.8	30	
408	Thermodynamic complexity of carbon capture in alkylamine-functionalized metalorganic frameworks. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4248-4254	13	29	
407	Actinide Dioxides in Water: Interactions at the Interface. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 3130-3134	6.4	29	
406	Surface enthalpy of goethite. Clays and Clay Minerals, 2005, 53, 113-122	2.1	29	
405	Enthalpy of formation of yttria-doped ceria. <i>Journal of Materials Research</i> , 2005 , 20, 144-150	2.5	29	
404	Combined computational and experimental investigation of the refractory properties of La2Zr2O7. <i>Acta Materialia</i> , 2015 , 84, 275-282	8.4	28	
403	Calorimetric Determination of Thermodynamic Stability of MAX and MXene Phases. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 28131-28137	3.8	28	
402	U(v) in metal uranates: a combined experimental and theoretical study of MgUO4, CrUO4, and FeUO4. <i>Dalton Transactions</i> , 2016 , 45, 4622-32	4.3	28	
401	Thermodynamic basis for evolution of apatite in calcified tissues. <i>American Mineralogist</i> , 2013 , 98, 2037	-2045	28	
400	Thermochemistry of Li1+xMn2NO4 (0?x?1/3) spinel. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 1182-11	89 3	28	
399	Energetics of Substituted Pollucites Along the CsAlSi2O6IIsTiSi2O6.5 Join: A High-Temperature Calorimetric Study. <i>Journal of the American Ceramic Society</i> , 2001 , 84, 555-560	3.8	28	
398	Energetics of kaolin polymorphs. American Mineralogist, 1999 , 84, 506-516	2.9	28	
397	Energetics of Ternary Nitride Formation in the (Li,Ca)(B,Al)N System. <i>Chemistry of Materials</i> , 1999 , 11, 1148-1152	9.6	28	
396	Thermodynamics of A3O4-B3O4 spinel solid solutions. <i>Journal of Inorganic and Nuclear Chemistry</i> , 1969 , 31, 59-72		28	
395	Energy Landscape of Water and Ethanol on Silica Surfaces. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 15428-15433	3.8	27	
394	Formation enthalpies and heat capacities of rear earth titanates: RE2TiO5 (RE=La, Nd and Gd). Journal of Solid State Chemistry, 2012 , 187, 70-74	3.3	27	
393	Direct Experimental Measurement of Water Interaction Energetics in Amorphous Carbonates MCO3 (M = Ca, Mn, and Mg) and Implications for Carbonate Crystal Growth. <i>Crystal Growth and Design</i> 2015, 15, 70-78	3.5	27	

392	Small molecule Isilica interactions in porous silica structures. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 109, 38-50	5.5	27
391	Letters. Aluminum substitution in MgSiO3 perovskite: Investigation of multiple mechanisms by 27Al NMR. <i>American Mineralogist</i> , 2003 , 88, 1161-1164	2.9	27
390	Thermochemical studies of nitrides and oxynitrides by oxidative oxide melt calorimetry. <i>Journal of Alloys and Compounds</i> , 2001 , 321, 300-306	5.7	27
389	Ti4+ in silicate melts: Energetics from high-temperature calorimetric studies and implications for melt structure. <i>Geochimica Et Cosmochimica Acta</i> , 1996 , 60, 4123-4131	5.5	27
388	Thermochemistry of carbonate-pyroxene equilibria. <i>Contributions To Mineralogy and Petrology</i> , 1993 , 114, 139-147	3.5	27
387	Calorimetric study of molten sodium molybdate-molybdenum trioxide mixtures at 970.degree.K. <i>Inorganic Chemistry</i> , 1967 , 6, 2119-2121	5.1	27
386	Composition dependent order-disorder transition in Nd Zr1D2D.5 pyrochlores: A combined structural, calorimetric and ab initio modeling study. <i>Acta Materialia</i> , 2017 , 125, 166-176	8.4	26
385	Thermodynamics of solvent interaction with the metal-organic framework MOF-5. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 1158-62	3.6	26
384	Energetics and Structure of Polymer-Derived Si(B)DC Glasses: Effect of the Boron Content and Pyrolysis Temperature. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 303-309	3.8	26
383	Energy landscape of self-assembled superlattices of PbSe nanocrystals. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 9054-7	11.5	26
382	Calorimetric Study of Alkali Metal Ion (K+, Na+, Li+) Exchange in a Clay-Like MXene. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 15145-15153	3.8	26
381	Calorimetric study of the surface energy of forsterite. <i>American Mineralogist</i> , 2010 , 95, 112-117	2.9	26
380	Energetics of La1MAxCrO3lperovskites (A=Ca or Sr). <i>Journal of Solid State Chemistry</i> , 2005 , 178, 234-244	3.3	26
379	Thermodynamics of uranyl minerals: Enthalpies of formation of rutherfordine, UO2CO3, andersonite, Na2CaUO2(CO3)3(H2O)5, and grimselite, K3NaUO2(CO3)3H2O. <i>American Mineralogist</i> , 2005 , 90, 1284-1290	2.9	26
378	Enthalpies of Formation of Gd2(Ti2-xZrx)O7 Pyrochlores. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 663, 1		26
377	Thermodynamics of Solid-Solution Formation in NiO-CuO. <i>Journal of the American Ceramic Society</i> , 1986 , 69, 453-457	3.8	26
376	Tunable Low Density Palladium Nanowire Foams. <i>Chemistry of Materials</i> , 2017 , 29, 9814-9818	9.6	25
375	Carbides and Nitrides of Zirconium and Hafnium. <i>Materials</i> , 2019 , 12,	3.5	25

(2005-2015)

374	In Situ Diffraction from Levitated Solids Under Extreme Conditions Btructure and Thermal Expansion in the Eu2O3 BrO2 System. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 1292-1299	3.8	25	
373	Nanocrystalline apatites: The fundamental role of water. <i>American Mineralogist</i> , 2018 , 103, 550-564	2.9	25	
372	Understanding the stability of fluorosulfate Li-ion battery cathode materials: a thermochemical study of LiFe1園MnxSO4F (0 弘 山) polymorphs. <i>Journal of Materials Chemistry</i> , 2012 , 22, 24446		25	
371	Thermochemistry of Barium Hollandites. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 1554-1561	3.8	25	
370	Structure and thermodynamics of uranium-containing iron garnets. <i>Geochimica Et Cosmochimica Acta</i> , 2016 , 189, 269-281	5.5	25	
369	In-situ determination of the HfO2IIa2O5-temperature phase diagram up to 3000IC. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 4848-4861	3.8	25	
368	Functionality in metal-organic framework minerals: proton conductivity, stability and potential for polymorphism. <i>Chemical Science</i> , 2019 , 10, 4923-4929	9.4	24	
367	White SiDII Ceramic: Structure and Thermodynamic Stability. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 242-246	3.8	24	
366	Entropy Stabilization of TiO2Nb2O5 WadsleyRoth Shear Phases and Their Prospects for Lithium-Ion Battery Anode Materials. <i>Chemistry of Materials</i> , 2020 , 32, 5301-5308	9.6	24	
365	Thermodynamic and structural evolution of Dy2Ti2O7 pyrochlore after swift heavy ion irradiation. <i>Acta Materialia</i> , 2018 , 145, 227-234	8.4	24	
364	Probing disorder in pyrochlore oxides using in situ synchrotron diffraction from levitated solids-A thermodynamic perspective. <i>Scientific Reports</i> , 2018 , 8, 10658	4.9	24	
363	Thermodynamics of the CoOInO System at Bulk and Nanoscale. <i>Chemistry of Materials</i> , 2012 , 24, 2311-	23.65	24	
362	Thermodynamic properties of CaTh(PO4)2 synthetic cheralite. <i>American Mineralogist</i> , 2008 , 93, 1356-13	62 9	24	
361	Thermodynamics of Silica Nanoparticle Self-Assembly in Basic Solutions of Monovalent Cations. Journal of Physical Chemistry C, 2008 , 112, 14754-14761	3.8	24	
360	Heats of Formation for Several Crystalline Polymorphs and Pressure-Induced Amorphous Forms of AMo2O8(A = Zr, Hf) and ZrW2O8. <i>Chemistry of Materials</i> , 2007 , 19, 468-476	9.6	24	
359	On the thermochemistry of the solid solution between jarosite and its chromate analog. <i>American Mineralogist</i> , 2003 , 88, 1949-1954	2.9	24	
358	Thermochemistry of Glasses in the Y2O3-Al2O3-SiO2 System. <i>Journal of the American Ceramic Society</i> , 2003 , 86, 1727-1732	3.8	24	
357	Thermochemistry of iron manganese oxide spinels. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 106-113	3.3	24	

356	Thermochemistry of stuffed quartz-derivative phases along the join LiAlSiO4-SiO2. <i>American Mineralogist</i> , 1999 , 84, 1360-1369	2.9	24
355	Enthalpies of Mixing in Silver BromideAlkali Bromide and Thallium ChlorideAlkali Chloride Liquid Mixtures. <i>Journal of Chemical Physics</i> , 1965 , 42, 3752-3757	3.9	24
354	Thermodynamic stability of lead-free alkali niobate and tantalate perovskites. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7691-7698	7.1	23
353	Thermodynamic Stability of Low-k Amorphous SiOCH Dielectric Films. <i>Journal of the American Ceramic Society</i> , 2016 , 99, 2752-2759	3.8	23
352	Structural, vibrational, and thermochemical properties of the monazite-type solid solution La1\(\text{NPC} \) PrxPO4. <i>Journal of Solid State Chemistry</i> , 2017 , 245, 82-88	3.3	23
351	Heat Capacity Studies of Surface Water Confined on Cassiterite (SnO2) Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 3910-3917	3.8	23
350	Thermodynamically Stable SiwCxNyOz Polymer-Like, Amorphous Ceramics Made from Organic Precursors. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 2391-2393	3.8	23
349	Direct Measurement of Relative Partial Molar Enthalpy of SiO2 in SiO2M2O (M=Li, Na, K, Cs) Binary and SiO2MaOAl2O3 Ternary Melts. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 1550-1555	3.8	23
348	Nitrate cancrinite: Synthesis, characterization, and determination of the enthalpy of formation. <i>Microporous and Mesoporous Materials</i> , 2005 , 87, 146-152	5.3	23
347	The Energetics of Cubic Zirconia from Solution Calorimetry of Yttria- and Calcia-Stabilized Zirconia. <i>Zeitschrift Fur Physikalische Chemie</i> , 1998 , 207, 59-65	3.1	23
346	Evaluation of Thermally Converted Silicotitanate Waste Forms. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 556, 77		23
345	Bio- and mineral acid leaching of rare earth elements from synthetic phosphogypsum. <i>Journal of Chemical Thermodynamics</i> , 2019 , 132, 491-496	2.9	23
344	Rare earth sulfates in aqueous systems: Thermodynamic modeling of binary and multicomponent systems over wide concentration and temperature ranges. <i>Journal of Chemical Thermodynamics</i> , 2019 , 131, 49-79	2.9	23
343	A comparative study of surface energies and water adsorption on Ce-bastnBite, La-bastnBite, and calcite via density functional theory and water adsorption calorimetry. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 7820-7832	3.6	22
342	Theoretical Prediction and Experimental Evaluation of Topological Landscape and Thermodynamic Stability of a Fluorinated Zeolitic Imidazolate Framework. <i>Chemistry of Materials</i> , 2019 , 31, 3777-3783	9.6	22
341	Energetics of a Uranothorite (Th1\(\mathbb{U}\)uxSiO4) Solid Solution. Chemistry of Materials, 2016 , 28, 7117-7124	9.6	22
340	The energy landscape of uranyl-peroxide species. <i>Chemistry - A European Journal</i> , 2014 , 20, 3646-51	4.8	22
339	Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2014 111 6209-14	11.5	22

338	Oxide melt solution calorimetry of Fe2+-bearing oxides and application to the magnetiteshaghemite (Fe3O4Be8/3O4) system. <i>American Mineralogist</i> , 2012 , 97, 164-175	2.9	22	
337	Metastability of Spinel-type Solid Solutions in the SiO2Al2O3 System. <i>Chemistry of Materials</i> , 1997 , 9, 3096-3100	9.6	22	
336	Crystal-chemical and energetic systematics of wadeite-type phases A2BSi3O9 (A = K, Cs; B = Si, Ti, Zr). <i>Physics and Chemistry of Minerals</i> , 2005 , 32, 426-435	1.6	22	
335	Crystal properties and energetics of synthetic kaolinite. <i>American Mineralogist</i> , 2001 , 86, 304-311	2.9	22	
334	Thermochemistry of Si6ØAlzOzN8Ø(z = 0 to 3.6) materials. <i>Journal of Materials Research</i> , 1999 , 14, 4630-	-4636	22	
333	Energetics of Alkali and Alkaline Earth Ion-Exchanged Zeolite A. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 15251-15256	3.8	22	
332	Compositional control of tunnel features in hollandite-based ceramics: structure and stability of (Ba,Cs)1.33(Zn,Ti)8O16. <i>Journal of Materials Science</i> , 2019 , 54, 1112-1125	4.3	22	
331	Thermodynamics of reaction between gas-turbine ceramic coatings and ingested CMAS corrodents. Journal of the American Ceramic Society, 2019 , 102, 2948-2964	3.8	22	
330	Synthesis, characterization and thermochemistry of Cs-, Rb- and Sr-substituted barium aluminium titanate hollandites. <i>Journal of Nuclear Materials</i> , 2015 , 459, 70-76	3.3	21	
329	Thermochemistry, Morphology, and Optical Characterization of Germanium Allotropes. <i>Chemistry of Materials</i> , 2014 , 26, 3263-3271	9.6	21	
328	The Structure of Liquid and Amorphous Hafnia. <i>Materials</i> , 2017 , 10,	3.5	21	
327	Structure and Thermal Expansion of YSZ and La2Zr2O7 Above 1500°C from Neutron Diffraction on Levitated Samples. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 3381-3388	3.8	21	
326	Energetics of stepwise disordering transformation in pyrochlores, RE2Ti2O7 (RE = Y, Gd and Dy). <i>Acta Materialia</i> , 2012 , 60, 4303-4310	8.4	21	
325	Atmospheric Pressure Synthesis of Heavy Rare Earth Sesquioxides Nanoparticles of the Uncommon Monoclinic Phase. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 3683-3686	3.8	21	
324	Energetics of cubic Si3N4. <i>Journal of Materials Research</i> , 2006 , 21, 41-44	2.5	21	
323	An in situ calorimetric study of zeolite crystallization kinetics. <i>Microporous and Mesoporous Materials</i> , 2002 , 52, 93-103	5.3	21	
322	Calorimetric insights into the synthesis of templated materials. <i>Current Opinion in Colloid and Interface Science</i> , 2005 , 10, 195-202	7.6	21	
321	Energetics in the brownmillerite-perovskite pseudobinary Ca2Fe2O5-CaTiO3. <i>Journal of Materials Research</i> , 1994 , 9, 3121-3124	2.5	21	

320	Thermodynamic relations among olivine, spinel, and phenacite structures in silicates and germanates. III. The system CuOMgOGeO2. <i>Journal of Solid State Chemistry</i> , 1974 , 11, 10-16	3.3	21
319	Structure and thermal expansion of Lu2O3 and Yb2O3 up to the melting points. <i>Journal of Nuclear Materials</i> , 2017 , 495, 385-391	3.3	20
318	Influence of antimony substitution on spontaneous strain and thermodynamic stability of lanthanum orthoniobate. <i>Ceramics International</i> , 2015 , 41, 2128-2133	5.1	20
317	Mesoporous silica synthesis: Energetics of interaction between framework and structure directing agent. <i>Microporous and Mesoporous Materials</i> , 2012 , 149, 119-125	5.3	20
316	Enthalpies of formation and insights into defect association in ceria singly and doubly doped with neodymia and samaria. <i>Solid State Ionics</i> , 2012 , 227, 17-22	3.3	20
315	First-principles computational study of defect clustering in solid solutions of ThO2 with trivalent oxides. <i>Physical Review B</i> , 2010 , 82,	3.3	20
314	Direct measurements of fusion and phase transition enthalpies in lanthanum oxide. <i>Journal of Materials Research</i> , 2011 , 26, 845-847	2.5	20
313	Thermodynamics of Oxide Systems Relevant to Alternative Gate Dielectrics 2005 , 57-108		20
312	Crystal Chemistry and Phase Transitions in Substituted Pollucites along the CsAlSi2O6-CsTiSi2O6.5 Join: A Powder Synchrotron X-ray Diffractometry Study. <i>Journal of the American Ceramic Society</i> , 2004 , 85, 1235-1242	3.8	20
311	29Si and 27Al MAS-NMR spectroscopy of b-eucryptite (LiAlSiO4): The enthalpy of Si,Al ordering. <i>American Mineralogist</i> , 2000 , 85, 181-188	2.9	20
310	Drop-and-catch (DnC) calorimetry using aerodynamic levitation and laser heating. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 754-760	3.8	19
309	Probing the energetics of organic-nanoparticle interactions of ethanol on calcite. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 5314-8	11.5	19
308	Formation enthalpies of LaLn?O3 (Ln?=Ho, Er, Tm and Yb) interlanthanide perovskites. <i>Journal of Solid State Chemistry</i> , 2015 , 227, 150-154	3.3	19
307	Size driven thermodynamic crossovers in phase stability in zirconia and hafnia. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 31-35	3.8	19
306	Crystal Structures, Surface Stability, and Water Adsorption Energies of La-BastnEite via Density Functional Theory and Experimental Studies. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 16767-16781	3.8	19
305	Thermochemical Insights into Rapid Solid-State Reaction Synthesis of #Sialon. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 9433-9435	3.4	19
304	Thermodynamics of ion-exchanged and natural clinoptilolite. <i>American Mineralogist</i> , 2001 , 86, 438-447	2.9	19
303	Calorimetric studies of the energetics of order-disorder in the system Mg1\(\mathbb{H}\)FexCa(CO3)2. American Mineralogist, 1999 , 84, 1622-1626	2.9	19

(2013-1976)

302	Mg2SnO4 and Co2SnO4 and some implications for silicates. <i>Earth and Planetary Science Letters</i> , 1976 , 31, 247-254	5.3	19
301	Chemical ordering in substituted fluorite oxides: a computational investigation of HoZrO and REThO (RE=Ho, Y, Gd, Nd, La). <i>Scientific Reports</i> , 2016 , 6, 38772	4.9	19
300	Effects of Simulated Rare Earth Recycling Wastewaters on Biological Nitrification. <i>Environmental Science & Earth Recycling Wastewaters on Biological Nitrification</i> . <i>Environmental Science & Earth Recycling Wastewaters on Biological Nitrification</i> .	10.3	18
299	Thermochemistry of UO2 IThO2 and UO2 IZrO2 fluorite solid solutions. <i>Journal of Chemical Thermodynamics</i> , 2017 , 114, 48-54	2.9	18
298	Thermodynamics of Nanoscale Calcium and Strontium Titanate Perovskites. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 3670-3676	3.8	18
297	Enthalpies of formation of CdSxSe1⊠ solid solutions. <i>Journal of Materials Research</i> , 2009 , 24, 1368-1374	2.5	18
296	Energetics of rare-earth-doped hafnia. Journal of Materials Research, 2007, 22, 876-885	2.5	18
295	New thermochemical evidence on the stability of dickite vs. kaolinite. <i>American Mineralogist</i> , 2003 , 88, 837-845	2.9	18
294	Enthalpy of formation of CaSi2O5, a quenched high-pressure phase with pentacoordinate silicon. <i>Physics and Chemistry of Minerals</i> , 2001 , 28, 57-60	1.6	18
293	High-temperature oxide melt calorimetry of oxides and nitrides. <i>Journal of Chemical Thermodynamics</i> , 2001 , 33, 859-871	2.9	18
292	Energetics of oxidation of oxynitrides: ZrND, YZrND, CaZrND, and MgZrND. <i>Journal of Materials Research</i> , 2000 , 15, 2558-2570	2.5	18
291	High Temperature Reaction Calorimetry Applied to Metastable and Nanophase Materials. <i>Magyar Apr</i> Dad KalemDyek, 1999 , 57, 653-658	Ο	18
290	Heat capacities, standard entropies and Gibbs energies of Sr-, Rb- and Cs-substituted barium aluminotitanate hollandites. <i>Journal of Chemical Thermodynamics</i> , 2016 , 93, 1-7	2.9	17
289	The role of ceramic and glass science research in meeting societal challenges: Report from an NSF-sponsored workshop. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 1777-1803	3.8	17
288	Solid-liquid phase equilibria of Fe-Cr-Al alloys and spinels. <i>Journal of Nuclear Materials</i> , 2017 , 492, 128-1	3 333	17
287	Structure and Thermochemistry of Perrhenate Sodalite and Mixed Guest Perrhenate/Pertechnetate Sodalite. <i>Environmental Science & Environmental Science</i>	10.3	17
286	Thermodynamics of Methane Adsorption on Copper HKUST-1 at Low Pressure. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2439-43	6.4	17
285	Characterization of Surface Defect Sites on Bulk and Nanophase Anatase and Rutile TiO2 by Low-Temperature Specific Heat. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 4544-4550	3.8	17

284	Thermochemistry of (CaxSr1-x)TiO3, (BaxSr1-x)TiO3, and (BaxCa1-x)TiO3 Perovskite Solid Solutions. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 1717-1726	3.8	17
283	Energetics of single-wall carbon nanotubes as revealed by calorimetry and neutron scattering. <i>Carbon</i> , 2011 , 49, 949-954	10.4	17
282	Enthalpy of formation and dehydration of lithium and sodium zeolite beta. <i>Microporous and Mesoporous Materials</i> , 2007 , 98, 29-40	5.3	17
281	Formation and hydration enthalpies of the hydrosodalite family of materials. <i>Microporous and Mesoporous Materials</i> , 2006 , 88, 283-292	5.3	17
280	Crystal chemistry and energetics of pharmacosiderite-related microporous phases in the K2Offs2OfiO2fiO2fiO2fi2O system. <i>Microporous and Mesoporous Materials</i> , 2004 , 72, 209-218	5.3	17
279	Thermodynamics of CoOMgO solid solutions. <i>Journal of Chemical Thermodynamics</i> , 2003 , 35, 1151-1159	2.9	17
278	Calorimetric study of the stability of spinelloids in the system NiAl2O4-Ni2SiO4. <i>Physics and Chemistry of Minerals</i> , 1984 , 10, 166-172	1.6	17
277	Disorder in HoTi Zr O: pyrochlore to defect fluorite solid solution series RSC Advances, 2020, 10, 34632	- 3.4 65(017
276	Thermodynamics and Stability of Rhabdophanes, Hydrated Rare Earth Phosphates REPO In HO. <i>Frontiers in Chemistry</i> , 2018 , 6, 604	5	17
275	Structure and energetics of SiOC and SiOC-modified carbon-bonded carbon fiber composites. Journal of the American Ceramic Society, 2017 , 100, 3693-3702	3.8	16
274	Thermodynamics of Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solutions at the bulk and nanoscale. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 22286-95	3.6	16
273	Thermodynamic Evidence of Structural Transformations in CO-Loaded Metal-Organic Framework Zn(MeIm) from Heat Capacity Measurements. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4833	-4841	16
272	Synthesis and thermodynamic study of transition metal ion (Mn\(\text{Ph}\), Co\(\text{P+}\), Cu\(\text{P+}\), and Zn\(\text{P+}\)) exchanged zeolites A and Y. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 10116-22	3.6	16
271	Energetics of Confinement of n-Hexane in CaNa Ion Exchanged Zeolite A. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 25590-25596	3.8	16
270	Computational study of the energetics and defect clustering tendencies for Y- and La-doped UO2. <i>Acta Materialia</i> , 2014 , 78, 282-289	8.4	16
269	Thermodynamics of thorium substitution in yttrium iron garnet: comparison of experimental and theoretical results. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16945-16954	13	16
268	Direct visualization of phase transition dynamics in binary supported phospholipid bilayers using imaging ellipsometry. <i>Soft Matter</i> , 2008 , 4, 1161-1164	3.6	16
267	Enthalpy of formation of the cubic fluorite phase in the cerialirconia system. <i>Journal of Materials Research</i> , 2008 , 23, 1105-1112	2.5	16

(2015-2008)

266	Enthalpy of formation and dehydration of alkaline earth cation exchanged zeolite beta. <i>Microporous and Mesoporous Materials</i> , 2008 , 109, 147-155	5.3	16	
265	Thermodynamic data of lawsonite and zoisite in the system CaOAl2O3BiO2H2O based on experimental phase equilibria and calorimetric work. <i>Contributions To Mineralogy and Petrology</i> , 2001 , 142, 298-308	3.5	16	
264	Thermodynamics of bastnaesite: A major rare earth ore mineral. American Mineralogist, 2016, 101, 1129	-1.534	16	
263	Pyrochlore and perovskite potassium tantalate: enthalpies of formation and phase transformation. <i>Chemistry - A European Journal</i> , 2015 , 21, 5231-7	4.8	15	
262	Steam-Induced Coarsening of Single-Unit-Cell MFI Zeolite Nanosheets and Its Effect on External Surface Bristed Acid Catalysis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9579-9585	16.4	15	
261	Heat capacity and thermodynamic functions of crystalline and amorphous forms of the metal organic framework zinc 2-ethylimidazolate, Zn(EtIm)2. <i>Journal of Chemical Thermodynamics</i> , 2018 , 116, 341-351	2.9	15	
260	Thermochemistry of onion-like carbons. <i>Carbon</i> , 2014 , 69, 490-494	10.4	15	
259	Energetics of Formation and Hydration of a Porous Metal Organic Nanotube. <i>Chemistry of Materials</i> , 2014 , 26, 5105-5112	9.6	15	
258	Thermodynamics of NiAl2O4NiFe2O4 Spinel Solid Solutions. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 423-430	3.8	15	
257	Energetics of mixing in ThO2teO2 fluorite solid solutions. <i>Journal of Nuclear Materials</i> , 2011 , 419, 72-75	53.3	15	
256	Thermochemistry of guest-free melanophlogite. American Mineralogist, 2003, 88, 1612-1614	2.9	15	
255	Enthalpy of Formation of Li[sub x]CoO[sub 2] (0.5 lk [1].0). <i>Journal of the Electrochemical Society</i> , 2005 , 152, J82	3.9	15	
254	Thermal expansion and structural transformations of stuffed derivatives of quartz along the LiAlSiO4BiO2 join: a variable-temperature powder synchrotron XRD study. <i>Physics and Chemistry of Minerals</i> , 2001 , 28, 302-312	1.6	15	
253	Calorimetric study of perovskite solid solutions in the CaSiO3faGeO3 system. <i>Physics and Chemistry of Minerals</i> , 2001 , 28, 413-420	1.6	15	
252	Formation Enthalpies of Tetravalent Lanthanide Perovskites by High Temperature Oxide Melt Solution Calorimetry. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 718, 1		15	
251	TiO2Surface Engineering to Improve Nanostability: The Role of Interface Segregation. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 4949-4960	3.8	14	
250	Review of surface water interactions with metal oxide nanoparticles. <i>Journal of Materials Research</i> , 2019 , 34, 416-427	2.5	14	
249	Enthalpies of formation of rare earth niobates, RE3NbO7. <i>American Mineralogist</i> , 2015 , 100, 1578-1583	2.9	14	

248	Thermodynamic stability and correlation with synthesis conditions, structure and phase transformations in orthorhombic and monoclinic Li2M(SO4)2 (M = Mn, Fe, Co, Ni) polymorphs. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2601-2608	13	14
247	Cadmium selenide: Surface and nanoparticle energetics. <i>Journal of Materials Research</i> , 2011 , 26, 720-72	. 5 2.5	14
246	Elastic properties of yttrium-doped BaCeO3 perovskite. <i>Applied Physics Letters</i> , 2007 , 90, 161903	3.4	14
245	Approximate activity-composition relations in the system MgO?ZnO at 1205\SC. <i>Journal of Inorganic and Nuclear Chemistry</i> , 1972 , 34, 2115-2119		14
244	Combined computational and experimental investigation of high temperature thermodynamics and structure of cubic ZrO and HfO. <i>Scientific Reports</i> , 2018 , 8, 14962	4.9	14
243	A correlation between formation enthalpy and ionic conductivity in perovskite-structured Li3xLa0.67\(\text{MTiO3} \) solid lithium ion conductors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12951-12957	13	13
242	Enthalpies of formation and phase stability relations of USi, U3Si5 and U3Si2. <i>Journal of Nuclear Materials</i> , 2019 , 523, 101-110	3.3	13
241	Hydrogenated Si Dt nanoparticles: Synthesis, structure, and thermodynamic stability. <i>Journal of Materials Research</i> , 2015 , 30, 295-303	2.5	13
240	Thermochemistry of rare earth doped uranium oxides LnxU1⊠O2Ū.5x+y (LnŒLa, Y, Nd). <i>Journal of Nuclear Materials</i> , 2015 , 465, 682-691	3.3	13
239	Little Thermodynamic Penalty for the Synthesis of Ultraporous Metal Organic Frameworks. <i>ChemPhysChem</i> , 2016 , 17, 468-70	3.2	13
238	Co3O4©o2ZnO4 spinels: The case for a solid solution. <i>Journal of Solid State Chemistry</i> , 2012 , 190, 143-14	49 .3	13
237	Thermochemistry and Aqueous Durability of Ternary Glass Forming Ba-Titanosilicates: Fresnoite (Ba2TiSi2O8) and Ba-Titanite (BaTiSiO5). <i>Journal of the American Ceramic Society</i> , 2009 , 92, 2053-2058	3.8	13
236	Enthalpy of formation of zinc acetate dihydrate. <i>Journal of Chemical Thermodynamics</i> , 2011 , 43, 980-982	22.9	13
235	The Thermodynamics of Ordered Perovskites on the CaTiO3-FeTiO3 Join. <i>Physics and Chemistry of Minerals</i> , 1998 , 25, 591-596	1.6	13
234	Thermodynamic properties of feroxyhyte (PFeOOH). Clays and Clay Minerals, 2008, 56, 526-530	2.1	13
233	Oxide-melt solution calorimetry of selenides: Enthalpy of formation of zinc, cadmium, and lead selenide. <i>American Mineralogist</i> , 2008 , 93, 779-783	2.9	13
232	Compressibility and pressure-induced amorphization of guest-free melanophlogite: An in-situ synchrotron X-ray diffraction study. <i>American Mineralogist</i> , 2007 , 92, 166-173	2.9	13
231	Calorimetric determination of energetics of solid solutions of UO2+x with CaO and Y2O3. <i>Journal of Nuclear Materials</i> , 2008 , 373, 39-43	3.3	13

(2015-2000)

230	Effects of Water, Cations, and Structure on Energetics of Layer and Framework Phases, NaxMgyMnO2[hH2O. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 5035-5039	3.4	13	
229	Energetics of Cobalt(II) Oxide with the Zinc-Blende Structure. <i>Journal of the American Ceramic Society</i> , 1993 , 76, 2465-2467	3.8	13	
228	Lithium aluminum-layered double hydroxide chlorides (LDH): Formation enthalpies and energetics for lithium ion capture. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 2398-2404	3.8	13	
227	Energetics of order-disorder in layered magnesium aluminum double hydroxides with interlayer carbonate. <i>Inorganic Chemistry</i> , 2015 , 54, 3253-9	5.1	12	
226	Structural Behavior of Ba1.24Al2.48Ti5.52O16 Hollandite at High Temperature: An In Situ Neutron Diffraction Study. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 255-262	3.8	12	
225	Energetics of lanthanide cobalt perovskites: LnCoO3I(Ln = La, Nd, Sm, Gd). <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19490-19496	13	12	
224	Linker Substituents Control the Thermodynamic Stability in Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 21720-21729	16.4	12	
223	Thermodynamic evidence of flexibility in HO and CO absorption of transition metal ion exchanged zeolite LTA. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 3970-3978	3.6	12	
222	Energetics of Dysprosia-Stabilized Bismuth Oxide Electrolytes. <i>Chemistry of Materials</i> , 2012 , 24, 4185-4	19.16	12	
221	Calorimetric Study of Heats of Mixing in SnxTi1\(\mathbb{R}\)O2Rutile Solid Solutions. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 3432-3436	3.8	12	
220	Energetics of ZnO nanoneedles: Surface enthalpy, stability, and growth. <i>Journal of Materials Research</i> , 2008 , 23, 1652-1657	2.5	12	
219	Thermochemistry of Framework Titanosilicate A2TiSi6O15 (A=K, Rb, Cs). <i>Journal of the American Ceramic Society</i> , 2005 , 88, 1819-1825	3.8	12	
218	Thermodynamic relations among olivine, spinel, and phenacite structures in silicates and germanates: II. The systems NiO?ZnO?GeO2 and CoO?ZnO?GeO2. <i>Journal of Solid State Chemistry</i> , 1973 , 6, 42-47	3.3	12	
217	Calorimetric Measurements of Surface Energy of Amorphous HfO2 Nanoparticles Produced by Gas Phase Condensation. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 10392-10397	3.8	11	
216	Mechanochemical Synthesis, Accelerated Aging, and Thermodynamic Stability of the Organic Mineral Paceite and Its Cadmium Analogue. <i>ACS Omega</i> , 2019 , 4, 5486-5495	3.9	11	
215	Energetics of sodium-calcium exchanged zeolite A. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 11198	8-3.63	11	
214	Energetics and structural evolution of Na-Ca exchanged zeolite A during heating. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 9241-7	3.6	11	
213	Review. Mineralogy, materials science, energy, and environment: A 2015 perspective. <i>American Mineralogist</i> , 2015 , 100, 674-680	2.9	11	

212	Molecular Recognition at Mineral Interfaces: Implications for the Beneficiation of Rare Earth Ores. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 16327-16341	9.5	11
211	Location and stability of europium in calcium sulfate and its relevance to rare earth recovery from phosphogypsum waste. <i>American Mineralogist</i> , 2016 , 101, 1854-1861	2.9	11
210	Effect of synthesis atmosphere on the proton conductivity of Y-doped barium zirconate solid electrolytes. <i>Ceramics International</i> , 2016 , 42, 13689-13696	5.1	11
209	Thermodynamics of radiation induced amorphization and thermal annealing of Dy2Sn2O7 pyrochlore. <i>Acta Materialia</i> , 2018 , 155, 386-392	8.4	11
208	Thermal annealing of natural, radiation-damaged pyrochlore. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 2017 , 232, 25-38	1	11
207	Calorimetric study of CaCu3Ti4O12, a ceramic with giant permittivity. <i>Journal of Materials Research</i> , 2008 , 23, 1522-1531	2.5	11
206	Energetics of cancrinite: Effect of salt inclusion. <i>Microporous and Mesoporous Materials</i> , 2007 , 98, 227-23	33 .3	11
205	Thermochemistry of Hf-Zirconolite, CaHfTi2O7. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 556, 11		11
204	Enthalpy of formation of katoite Ca3Al2[(OH)4]3: Energetics of the hydrogarnet substitution. <i>American Mineralogist</i> , 1999 , 84, 389-391	2.9	11
203	The Nanocrystalline SnO2IIiO2 System-Part II: Surface Energies and Thermodynamic Stability. Journal of the American Ceramic Society, 2016 , 99, 638-644	3.8	11
202	Distinctive Interactions of Cesium and Hexaniobate in Water. <i>ChemistrySelect</i> , 2016 , 1, 1858-1862	1.8	11
201	Thermodynamic and structural evolution of mechanically milled and swift heavy ion irradiated Er2Ti2O7 pyrochlore. <i>Acta Materialia</i> , 2019 , 181, 309-317	8.4	10
200	Sample seal-and-drop device and methodology for high temperature oxide melt solution calorimetric measurements of PuO. <i>Review of Scientific Instruments</i> , 2019 , 90, 044101	1.7	10
199	A combined calorimetric and computational study of the energetics of rare earth substituted UO2 systems. <i>Acta Materialia</i> , 2015 , 97, 191-198	8.4	10
198	Thermodynamics Drives the Stability of the MOF-74 Family in Water. <i>ACS Omega</i> , 2020 , 5, 13158-13163	3.9	10
197	Combined experimental and computational investigation of thermodynamics and phase equilibria in the CaOIIiO2 system. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 1361-1370	3.8	10
196	Heat capacities and thermodynamic properties of antimony substituted lanthanum orthoniobates. <i>Ceramics International</i> , 2016 , 42, 7054-7059	5.1	10
195	Hydration dynamics in zeolite A 🖾 X-ray diffraction and infrared spectroscopic study. <i>Microporous and Mesoporous Materials</i> , 2018 , 268, 197-201	5.3	10

194	Thermodynamics of H2O and CO2 Absorption and Guest-Induced Phase Transitions in Zeolite RHO. Journal of Physical Chemistry C, 2018 , 122, 20366-20376	3.8	10
193	Compositional control of radionuclide retention in hollandite-based ceramic waste forms for Cs-immobilization. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 4314-4324	3.8	10
192	Defect chemistry of singly and doubly doped ceria: correlation between ion transport and energetics. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 9517-21	16.4	10
191	Manganese carbonate formation from amorphous and nanocrystalline precursors: Thermodynamics and geochemical relevance. <i>American Mineralogist</i> , 2014 , 99, 1063-1070	2.9	10
190	Direct Measurement of Fusion Enthalpy of LaAlO3 and Comparison of Energetics of Melt, Glass, and Amorphous Thin Films. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 1589-1594	3.8	10
189	Energetics of lanthanide-doped calcium phosphate apatite. <i>American Mineralogist</i> , 2014 , 99, 2320-2327	2.9	10
188	Thermodynamics of Nanoscale Lead Titanate and Barium Titanate Perovskites. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 3254-3262	3.8	10
187	Enthalpy of formation of Ln2O2CO3 II (Ln=La, Nd, Eu) and thermodynamics of decomposition equilibria. <i>Thermochimica Acta</i> , 2012 , 550, 76-82	2.9	10
186	Energetics of cation mixing in urania-ceria solid solutions with stoichiometric oxygen concentrations. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 5680-5	3.6	10
185	Thermodynamic study of alkali and alkaline-earth cation-exchanged natrolites. <i>Microporous and Mesoporous Materials</i> , 2013 , 167, 221-227	5.3	10
184	Thermochemistry of nanoparticles on a substrate: Zinc oxide on amorphous silica. <i>Journal of Materials Research</i> , 2008 , 23, 1907-1915	2.5	10
183	Application of calorimetry on a chip to high-pressure materials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 9187-91	11.5	10
182	Octahedral microporous phases Na2Nb2NTixO6N(OH)xIH2O and their related perovskites: Crystal chemistry, energetics, and stability relations. <i>Journal of Materials Research</i> , 2005 , 20, 618-627	2.5	10
181	Heat capacities and absolute entropies of UTi2O6 and CeTi2O6. <i>Journal of Thermal Analysis and Calorimetry</i> , 2005 , 81, 617-625	4.1	10
180	Thermodynamic data of the high-pressure phase Mg5Al5Si6O21(OH)7 (Mg-sursassite). <i>Physics and Chemistry of Minerals</i> , 2001 , 28, 475-487	1.6	10
179	Thermochemistry and Structure of Low Pressure Chemically Vapor Deposited and Bulk SiO2 - P 2 O 5 and SiO2 - GeO2 Glasses. <i>Journal of the Electrochemical Society</i> , 1986 , 133, 431-439	3.9	10
178	Energetics of defect production in fluorite-structured CeO2 induced by highly ionizing radiation. <i>Physical Review Materials</i> , 2018 , 2,	3.2	10
177	The Nanocrystalline SnO2IIiO2 SystemPart I: Structural Features. <i>Journal of the American Ceramic Society</i> , 2016 , 99, 631-637	3.8	10

176	High-temperature calorimetric study of oxide component dissolution in a CaOMgOAl2O3BiO2 slag at 1450°C. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 1172-1177	3.8	9
175	Metal-catalyst-free access to multiwalled carbon nanotubes/silica nanocomposites (MWCNT/SiO) from a single-source precursor. <i>Dalton Transactions</i> , 2019 , 48, 11018-11033	4.3	9
174	Heat capacity and thermodynamic functions of crystalline forms of the metal-organic framework zinc 2-methylimidazolate, Zn(MeIm)2. <i>Journal of Chemical Thermodynamics</i> , 2019 , 136, 160-169	2.9	9
173	Nuclear Materials. Taking the measure of molten uranium oxide. <i>Science</i> , 2014 , 346, 916-7	33.3	9
172	Energetics of CdSxSe1⊠ quantum dots in borosilicate glasses. <i>Journal of Non-Crystalline Solids</i> , 2007 , 353, 2785-2795	3.9	9
171	Thermodynamics of Formation of Binary and Ternary Nitrides in the System Ce/Mn/N. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2001 , 627, 194-200	1.3	9
170	Thermodynamic stability of SFCA (silico-ferrite of calcium and aluminum) and SFCA-I phases. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 3646-3651	3.8	8
169	Energetics of CO and HO adsorption on alkaline earth metal doped TiO. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 15600-15607	3.6	8
168	Experimental thermochemistry of neptunium oxides: Np2O5 and NpO2. <i>Journal of Nuclear Materials</i> , 2018 , 501, 398-403	3.3	8
167	Thermodynamic Stability of Transition-Metal-Substituted LiMn2-x Mx O4 (M=Cr, Fe, Co, and Ni) Spinels. <i>ChemPhysChem</i> , 2016 , 17, 1973-8	3.2	8
166	Neutron Spectroscopic and Thermochemical Characterization of LithiumAluminum-Layered Double Hydroxide Chloride: Implications for Lithium Recovery. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 20723-20729	3.8	8
165	Synthesis, Crystal Structure, and Enthalpies of Formation of Churchite-type REPO412H2O (RE = Gd to Lu) Materials. <i>Crystal Growth and Design</i> , 2019 , 19, 4641-4649	3.5	8
164	Energetics of Formation and Disordering in Rare Earth Weberite RETaO Materials. <i>Inorganic Chemistry</i> , 2019 , 58, 16126-16133	5.1	8
163	A combined experimental and theoretical study of enthalpy of phase transition and fusion of yttria above 2000 LC using Brop-n-catchLalorimetry and first-principles calculation. <i>Acta Materialia</i> , 2017 , 124, 204-209	8.4	8
162	Energetic Insight into the Formation of Solids from Aluminum Polyoxocations. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9253-6	16.4	8
161	Controllable Morphology of Engelhard Titanium Silicates ETS-4: Synthetic, Photocatalytic, and Calorimetric Studies. <i>Chemistry of Materials</i> , 2011 , 23, 1166-1173	9.6	8
160	The Effect of Vacancy and Barium Substitution on the Stability of the Cesium Titanium Silicate Pollucite. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 3053-3059	3.8	8
159	The Crystallization of Ba-Substituted CsTiSi2O6.5 Pollucite Using CsTiSi2O6.5 Seed Crystals. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 2144-2146	3.8	8

(2015-2002)

158	The enthalpy of formation and internally consistent thermodynamic data of Mg-staurolite. <i>American Mineralogist</i> , 2002 , 87, 397-404	2.9	8	
157	Thermochemistry of complex perovskites. AIP Conference Proceedings, 2000,	0	8	
156	Silicates and related minerals: Solid state chemistry and thermodynamics applied to geothermometry and geobarometry. <i>Progress in Solid State Chemistry</i> , 1976 , 11, 203-264	8	8	
155	Thermodynamics of cesium lead halide (CsPbX3, x= I, Br, Cl) perovskites. <i>Thermochimica Acta</i> , 2021 , 695, 178813	2.9	8	
154	Phase transformations in oxides above 2000°C: experimental technique development. <i>Advances in Applied Ceramics</i> , 2018 , 117, s82-s89	2.3	8	
153	Low temperature heat capacity and thermodynamic functions of anion bearing sodalites Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I). <i>Journal of Chemical Thermodynamics</i> , 2017 , 114, 14-24	2.9	7	
152	Energetics of hydration on uranium oxide and peroxide surfaces. <i>Journal of Materials Research</i> , 2019 , 34, 3319-3325	2.5	7	
151	Possible correlation between enthalpies of formation and redox potentials in LiMSO4OH (M = Co, Fe, Mn), Li-ion polyanionic battery cathode materials. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6887-68	19 ¹ 43	7	
150	Surface Energetics of Nanoscale LaMnO3+IPerovskite. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 3202-3209	3.8	7	
149	Energetics of heterometal substitution in EKeggin [MO4Al12(OH)24(OH2)12]6/7/8+ ions. <i>American Mineralogist</i> , 2014 , 99, 2337-2343	2.9	7	
148	Energetic Effects of Substitution of LaNd and Sille Oxyapatite-Type Materials. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 3915-3919	3.8	7	
147	Thermochemistry and Crystallization of Glass-Forming Y-Substituted Sr-Analogues of Fresnoite (Sr2TiSi2O8). <i>Journal of the American Ceramic Society</i> , 2010 , 93, 2055	3.8	7	
146	Synthesis and thermochemistry of relaxor ferroelectrics in the lead magnesium niobatelead titanate (PMNPT) solid solutions series. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1837-1845		7	
145	Iron ore sintering. Journal of Thermal Analysis and Calorimetry, 2009, 96, 353-361	4.1	7	
144	The thermodynamics of gas absorption and guest-induced flexibility in zeolite Y. <i>Microporous and Mesoporous Materials</i> , 2020 , 294, 109893	5.3	7	
143	MBsbauer Spectral Properties of Yttrium Iron Garnet, Y3Fe5O12, and Its Isovalent and Nonisovalent Yttrium-Substituted Solid Solutions. <i>Inorganic Chemistry</i> , 2016 , 55, 3413-8	5.1	7	
142	Thermochemistry of formation of ion exchanged zeolite RHO. <i>Microporous and Mesoporous Materials</i> , 2019 , 274, 373-378	5.3	7	
141	Energetics and defect clustering trends for trivalent rare earth cations substituted in UO2. <i>Journal of Nuclear Materials</i> , 2015 , 457, 252-255	3.3	6	

140	Thermochemistry of BaSm2O4 and thermodynamic assessment of the BaOBm2O3 system. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 5827-5835	3.8	6
139	Energetics of spinels in the Fe-Ti-O system at the nanoscale. <i>ChemPhysChem</i> , 2014 , 15, 3655-62	3.2	6
138	Energetics of CeriumIlirconium Substitution in the xCe0.8Y0.2O1.9[III]Zr0.8Y0.2O1.9 System. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 584-589	3.8	6
137	Energetics of La2O3HfO2BiO2 Glasses. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 1088-1094	3.8	6
136	Thermal Analysis of High-Entropy Rare Earth Oxides. <i>Materials</i> , 2020 , 13,	3.5	6
135	Energetics of the Local Environment of Structure-Directing Agents Influence Zeolite Synthesis. <i>Chemistry of Materials</i> , 2021 , 33, 2126-2138	9.6	6
134	Thermochemistry and phase stability of the polymorphs of yttrium tantalate, YTaO4. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 1629-1638	6	6
133	Thermodynamics of copper-manganese and copper-iron spinel solid solutions. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 3684-3692	3.8	5
132	Mechanical and structural properties of radiation-damaged allanite-(Ce) and the effects of thermal annealing. <i>Physics and Chemistry of Minerals</i> , 2019 , 46, 921-933	1.6	5
131	Systematic Water Uptake Energetics of Yttrium-Doped Barium Zirconate High Resolution Thermochemical Study. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 11308-11316	3.8	5
130	Defect Chemistry of Singly and Doubly Doped Ceria: Correlation between Ion Transport and Energetics. <i>Angewandte Chemie</i> , 2014 , 126, 9671-9675	3.6	5
129	Theoretical study of mixing energetics in homovalent fluorite-structured oxide solid solutions. Journal of Nuclear Materials, 2014 , 444, 292-297	3.3	5
128	Thermodynamics of Nanocrystalline Sn 0.586 Ti 0.414 O 2 Rutile Solid Solution: Comparison with Nanocrystalline SnO 2 and TiO 2 and with Bulk Materials. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 2622-2626	3.8	5
127	Grain-Boundary Enthalpies of Cubic Yttria-Stabilized Zirconia. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 2181-2184	3.8	5
126	Thermochemistry of a synthetic Na-Mg-rich triple-chain silicate: Determination of thermodynamic variables. <i>American Mineralogist</i> , 2009 , 94, 1242-1254	2.9	5
125	Yttria-stabilized zirconia crystallization in Al2O3/YSZ multilayers. <i>Journal of Materials Research</i> , 2012 , 27, 939-943	2.5	5
124	Thermochemistry of glass forming Y-substituted Sr-analogues of titanite (SrTiSiO5). <i>Journal of Materials Research</i> , 2009 , 24, 3380-3386	2.5	5
123	Energetics of Nitridophosphates PON and LiNaPON Glasses Materials Research Society Symposia Proceedings, 1998, 547, 389		5

(2014-1980)

122	Lattice Stability of AX and AB2O4 Compounds. <i>Calphad: Computer Coupling of Phase Diagrams and Thermochemistry</i> , 1980 , 4, 255-264	1.9	5
121	Enthalpies of formation of high entropy and multicomponent alloys using oxide melt solution calorimetry. <i>Intermetallics</i> , 2020 , 125, 106897	3.5	5
120	A Synergistic Approach to Unraveling the Thermodynamic Stability of Binary and Ternary Chevrel Phase Sulfides. <i>Chemistry of Materials</i> , 2020 , 32, 7044-7051	9.6	5
119	Shear Pleasure: The Structure, Formation, and Thermodynamics of Crystallographic Shear Phases. <i>Annual Review of Materials Research</i> , 2021 , 51, 521-540	12.8	5
118	Thermodynamic Properties of Polymorphs of Fluorosulfate Based Cathode Materials with Exchangeable Potassium Ions. <i>ChemPhysChem</i> , 2016 , 17, 3365-3368	3.2	5
117	Structure and thermodynamic stability of UTaO, a U(v)-bearing compound. <i>Dalton Transactions</i> , 2016 , 45, 18892-18899	4.3	5
116	Energetics of melting of Yb2O3 and Lu2O3 from drop and catch calorimetry and first principles computations. <i>Journal of Chemical Thermodynamics</i> , 2019 , 132, 405-410	2.9	5
115	Thermodynamic Studies of Bromide Incorporation into Cesium Lead Iodide (CsPbI3). <i>Journal of Physical Chemistry C</i> , 2020 , 124, 8639-8642	3.8	5
114	Effects of Al:Si and (All-INa):Si ratios on the properties of the international simple glass, part I: Physical properties. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 167-182	3.8	5
113	Thermodynamics of ZnxMn3NO4 and Mg1NCuzCr2O4 spinel solid solutions. <i>Journal of Materials Research</i> , 2019 , 34, 3305-3311	2.5	4
112	Thermochemistry of Surfactant-Templating of USY Zeolite. <i>Chemistry - A European Journal</i> , 2019 , 25, 10045-10048	4.8	4
111	Energetics of ethanol and carbon dioxide adsorption on anatase, rutile, and 🗟 lumina nanoparticles. <i>American Mineralogist</i> , 2019 , 104, 686-693	2.9	4
110	Thermodynamic stability of the fluorite phase in the CeO2 ICaO IZrO2 system. <i>Journal of Nuclear Materials</i> , 2019 , 517, 80-85	3.3	4
109	Quantifying oxygen vacancies in neodymium and samarium doped ceria from heat capacity measurements. <i>Acta Materialia</i> , 2020 , 188, 740-744	8.4	4
108	Hydration structure and water exchange kinetics at xenotime-water interfaces: implications for rare earth minerals separation. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 7719-7727	3.6	4
107	Heat capacities, entropies, and Gibbs free energies of formation of low-k amorphous Si(O)CH dielectric films and implications for stability during processing. <i>Journal of Chemical Thermodynamics</i> , 2019 , 128, 320-335	2.9	4
106	New Developments in the Calorimetry of High-Temperature Materials. <i>Engineering</i> , 2019 , 5, 366-371	9.7	4
105	Experimental energetics of large and extra-large pore zeolites: Pure silica beta polymorph C (BEC) and Ge-containing ITQ-33. <i>Microporous and Mesoporous Materials</i> , 2014 , 187, 77-81	5.3	4

104	Yttria-stabilized hafnia: Thermochemistry of formation and hydration of nanoparticles. <i>Journal of Materials Research</i> , 2012 , 27, 1022-1028	2.5	4
103	Enthalpies of formation of Fe-Ni monosulfide solid solutions. <i>American Mineralogist</i> , 2013 , 98, 1508-151	1 5 .9	4
102	Yttrium Substitution in MTiO3 (M=Ca, Sr, Ba and Ca+Sr+Ba) Perovskites and Implication for Incorporation of Fission Products into Ceramic Waste Forms. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 3112-3116	3.8	4
101	Enthalpies of formation of pyrrhotite Fe10.125xS (0 lk ll) solid solutions. <i>American Mineralogist</i> , 2010 , 95, 717-723	2.9	4
100	Thermochemistry of proton containing borosilicate, aluminosilicate and gallosilicate zeolite beta. <i>Microporous and Mesoporous Materials</i> , 2011 , 142, 749-753	5.3	4
99	Energetics of oxidation of REBiALDN glasses. Journal of Materials Research, 2003, 18, 1607-1613	2.5	4
98	Correlation of Formation Enthalpies with Critical Amorphization Temperature for Pyrochlore and Monazite. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 824, 225		4
97	Thermal analyses of bulk amorphous oxides and silicates of zirconium and hafnium. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 745, 141		4
96	The enthalpy of transformation of Ca(OH)2-I (portlandite) to Ca(OH)2-II (EuI2 structure) by low-temperature DSC. <i>Physics and Chemistry of Minerals</i> , 2000 , 27, 604-609	1.6	4
95	Energetics of Salt-Bearing Sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I): A Treatment Option for Pertechnetate-Enriched Nuclear Waste Streams. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 2153-2161	3.2	4
94	Development of high-temperature oxide melt solution calorimetry for p-block element containing materials ICORRIGENDUM 2021 , 36, 785		4
93	Characterization of structural changes in modern and archaeological burnt bone: Implications for differential preservation bias. <i>PLoS ONE</i> , 2021 , 16, e0254529	3.7	4
92	Rare-earth perovskites along the CaTiO3-Na0.5La0.5TiO3 join: Phase transitions, formation enthalpies, and implications for loparite minerals. <i>American Mineralogist</i> , 2016 , 101, 2051-2056	2.9	4
91	Recovery of Rare Earth Elements from Recycled Hard Disk Drive Mixed Steel and Magnet Scrap. <i>Minerals, Metals and Materials Series</i> , 2021 , 139-154	0.3	4
90	Thermochemical investigation of lithium borate glasses and crystals. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 4538-4545	3.8	3
89	Thermochemistry of nitrogen-doped reduced graphene oxides. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 6322-6327	6	3
88	In Situ High-Temperature Synchrotron Diffraction Studies of (Fe,Cr,Al)O Spinels. <i>Inorganic Chemistry</i> , 2020 , 59, 5949-5957	5.1	3
87	Thermodynamics of amorphous SiN(O)H dielectric films synthesized by plasma-enhanced chemical vapor deposition. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 2017-2027	3.8	3

(2020-2018)

86	Experimental heat capacities, excess entropies, and magnetic properties of bulk and nano Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solutions. <i>Journal of Solid State Chemistry</i> , 2018 , 259, 79	9-9ð ^{.3}	3	
85	Thermochemistry of Rare Earth Perovskites. <i>MRS Advances</i> , 2016 , 1, 2695-2700	0.7	3	
84	Thermochemistry of rare earth perovskites Na3xRE0.67⊠TiO3 (RE = La, Ce). <i>American Mineralogist</i> , 2016 , 101, 1125-1128	2.9	3	
83	The energetics of La4LiAuO8. <i>Journal of Materials Research</i> , 2011 , 26, 1188-1192	2.5	3	
82	Synthesis and calorimetric studies of oxide multilayer systems: Solid oxide fuel cell cathode and electrolyte materials. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2010 , 28, C5A1-C5A5	1.3	3	
81	The energetics of hematite dissolution in iron-oxide-rich melts: In situ high-temperature calorimetric studies. <i>American Mineralogist</i> , 2007 , 92, 1064-1070	2.9	3	
80	Trends and Systematics in Mineral Thermodynamics. <i>Zeitschrift Fur Elektrotechnik Und Elektrochemie</i> , 1982 , 86, 994-1001		3	
79	Conductivity, structure, and thermodynamics of YTiO-YNbO solid solutions. <i>Dalton Transactions</i> , 2020 , 49, 10839-10850	4.3	3	
78	Energetic Stability and Its Role in the Mechanism of Ionic Transport in NASICON-Type Solid-State Electrolyte LiAlTi(PO). <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 4400-4406	6.4	3	
77	Avalanches during recrystallization in radiation-damaged pyrochlore and allanite: Statistical similarity to phase transitions in functional materials. <i>Applied Physics Letters</i> , 2019 , 115, 231904	3.4	3	
76	Thermochemistry of rare earth oxyhydroxides, REOOH (RE = Eu to Lu). <i>Journal of Solid State Chemistry</i> , 2020 , 287, 121344	3.3	3	
75	Energetic insights into the crystallization of lanthanum carbonate amorphous precursors. <i>Thermochimica Acta</i> , 2020 , 688, 178605	2.9	3	
74	Development of high-temperature oxide melt solution calorimetry for p-block element containing materials ICORRIGENDUM. <i>Journal of Materials Research</i> , 2021 , 36, 785-785	2.5	3	
73	Thermochemistry of the simplest metal organic frameworks: Formates [M(HCOO)2][kH2O (M = Li, Mg, Mn, Co, Ni, and Zn). <i>Journal of Chemical Thermodynamics</i> , 2018 , 118, 325-330	2.9	3	
72	Structure-property and thermodynamic relationships in rare earth (Y, Eu, Pr) iridate pyrochlores. <i>Journal of Solid State Chemistry</i> , 2021 , 299, 122163	3.3	3	
71	Synthesis and thermodynamics of uranium-incorporated ∃-Fe2O3 nanoparticles. <i>Journal of Nuclear Materials</i> , 2021 , 556, 153172	3.3	3	
70	Reply to comments: In-situ determination of the HfO2-Ta2O5-temperature phase diagram up to 3000°CIJournal of the American Ceramic Society, 2019 , 102, 7028-7030	3.8	2	
69	Thermodynamic assessment of BaOlin2O3 (Lnl⊨lLa, Pr, Eu, Gd, Er) systems. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 3896-3904	3.8	2	

68	Thermochemistry of cation disordered Li ion battery cathode materials, ($M' = Nb$ and Ta, $M'' = Mn$ and Fe) RSC Advances, 2020 , 10, 6540-6546	3.7	2
67	Steam-Induced Coarsening of Single-Unit-Cell MFI Zeolite Nanosheets and Its Effect on External Surface Brfisted Acid Catalysis. <i>Angewandte Chemie</i> , 2020 , 132, 9666-9672	3.6	2
66	Calorimetric study of the thermodynamic properties of Mn5O8. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 1394-1401	3.8	2
65	Enthalpies of formation of the solid solutions of ZrxY0.5 $\mbox{$\mathbb{N}$}/2$ Ta0.5 $\mbox{$\mathbb{N}$}/2$ O2 (0 $\mbox{$\mathbb{N}$}$ $\mbox{$\mathbb{N}$}$ 0.2 and 0.65 $\mbox{$\mathbb{N}$}$ $\mbox{$\mathbb{N}$}$ 1). Journal of Materials Research, 2019 , 34, 3343-3350	2.5	2
64	Energetics of porous amorphous low-k SiOCH dielectric films. <i>Journal of Chemical Thermodynamics</i> , 2019 , 139, 105885	2.9	2
63	Thermodynamics of BaNd2O4 and phase diagram of the BaONd2O3 system. <i>Journal of Materials Research</i> , 2019 , 34, 3337-3342	2.5	2
62	Towards a nanoparticle-based prophylactic for maternal autoantibody-related autism. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2019 , 21, 102067	6	2
61	High-Temperature Materials Chemistry and Thermodynamics 2014 , 17-38		2
60	Formation and Dehydration Enthalpy of Potassium Hexaniobate. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 304-311	3.8	2
59	Energetic Insight into the Formation of Solids from Aluminum Polyoxocations. <i>Angewandte Chemie</i> , 2015 , 127, 9385-9388	3.6	2
58	Energetics of Silica-Poor Glasses in the Systems MgOBiO2 and Mg0.5Ca0.5OBiO2. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 451-456	3.8	2
57	Experimental Confirmation of Low Surface Energy in LiCoO2 and Implications for Lithium Battery Electrodes. <i>Angewandte Chemie</i> , 2013 , 125, 12361-12364	3.6	2
56	Application of scanning calorimetry to estimate soil organic matter loss after fires. <i>Journal of Thermal Analysis and Calorimetry</i> , 2011 , 104, 351-356	4.1	2
55	Dynamics of Water Confined on the Surface of Titania and Cassiterite Nanoparticles. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1352, 47		2
54	Aluminum in Magnesium Silicate Perovskite: Synthesis and Energetics of Defect Solid Solutions. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 718, 1		2
53	A calorimetric study of zoisite and clinozoisite solid solutions. <i>American Mineralogist</i> , 2001 , 86, 80-91	2.9	2
52	Formation and energetics of amorphous rare earth (RE) carbonates in the RE2O3IIO2H2O system. <i>Thermochimica Acta</i> , 2020 , 692, 178753	2.9	2
51	Synthesis, Characterization, and Enthalpies of Formation of Uranium Substituted Zirconolites. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 1878-1887	3.2	2

50	Thermochemical Insights into Stability and Hydration of Ion-Exchanged Zeolite ZK-5 (KFI Framework). <i>Journal of Physical Chemistry C</i> , 2020 , 124, 26193-26202	3.8	2
49	Pressure-induced structural changes cause large enhancement of photoluminescence in halide perovskites: a quantitative relationship. <i>National Science Review</i> , 2021 , 8, nwab041	10.8	2
48	Surface energy of fayalite and its effect on Fe-Si-O oxygen buffers and the olivine-spinel transition. <i>American Mineralogist</i> , 2018 , 103, 1599-1603	2.9	2
47	High-Resolution Thermochemical Study of Phase Stability and Rapid Oxygen Incorporation in YBaCoZn O 114-Cobaltites. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 9597-9604	2.8	2
46	Marinite Li2Ni(SO4)2 as a New Member of the Bisulfate Family of High-Voltage Lithium Battery Cathodes. <i>Chemistry of Materials</i> , 2021 , 33, 6108-6119	9.6	2
45	Radiation Effects in the Crystalline-Amorphous SiOC Polymer-Derived Ceramics: Insights from Experiments and Molecular Dynamics Simulation. <i>ACS Applied Materials & Dynamics</i> , 13, 4010	o8 : 401	1 7
44	Heat capacity and thermodynamic functions of transition metal ion (Cu2+, Fe2+, Mn2+) exchanged, partially dehydrated zeolite A (LTA). <i>Journal of Chemical Thermodynamics</i> , 2021 , 161, 106556	2.9	2
43	A new class of entropy stabilized oxides: Commensurately modulated A6B2O17 (AIEIZr, Hf; BIEINb, Ta) structures. <i>Scripta Materialia</i> , 2021 , 204, 114139	5.6	2
42	Thermochemistry of sodium rare earth ternary fluorides, NaREF4. <i>Acta Materialia</i> , 2021 , 220, 117289	8.4	2
41	Heat capacity and thermodynamic functions of partially dehydrated cation-exchanged (Na+, Cs+, Cd2+, Li+, and NH4+) RHO zeolites. <i>Journal of Chemical Thermodynamics</i> , 2022 , 164, 106620	2.9	2
40	The structure and thermochemistry of K2CO3MgCO3 glass. <i>Journal of Materials Research</i> , 2019 , 34, 3377-3388	2.5	1
39	Greigite (FeS) is thermodynamically stable: Implications for its terrestrial and planetary occurrence. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 28645-28648	3 ^{11.5}	1
38	Energetics of bulk lutetium-doped Ce1\(\text{LuxO2}\(\text{LuxO2}\(\text{M}/2 \) compounds. Journal of the American Ceramic Society, 2018 , 101, 3520-3526	3.8	1
37	Synthesis and thermodynamics of transition metal oxide based sodium ion cathode materials. Journal of Solid State Chemistry, 2019 , 280, 121011	3.3	1
36	The Energy Landscape of Uranyl Peroxide Species. Chemistry - A European Journal, 2014, 20, 3536-3536	4.8	1
35	Constraint of Oxygen Fugacity During Field-Assisted Sintering: TiO2 as a Test Case. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 970-974	3.8	1
34	Thermochemical Investigations of Zirconolite, Pyrochlore and Brannerite: Candidate Materials for the Immobilization of Plutonium. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 807, 337		1
33	Environmental Implications: Nanoparticle Geochemistry in Water and Air. <i>ACS Symposium Series</i> , 2004 , 92-96	0.4	1

32	Thermodynamic Functions of Zirconolite and their Uses in Computer Simulation. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 713, 1		1
31	Effect of La and Y on Crystallization Temperatures of Hafnia and Zirconia 2004 , 19, 693		1
30	Fluorite and Pyrochlore Phases in the HfO2 -La2O3 -Gd2O3 Systems: Characterization and Calorimetric Study of Samples Quenched From Melts Formed by Laser Heating and Aerodynamic Levitation. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1122, 7		1
29	Thermochemistry of Substituted Perovskites in the NaTixNb1-xO3-0.5x System. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 718, 1		1
28	Cooperative formation of porous silica and peptides on the prebiotic Earth. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
27	Structure and Thermodynamics of Silicon Oxycarbide Polymer-Derived Ceramics with and without Mixed-Bonding. <i>Materials</i> , 2021 , 14,	3.5	1
26	Thermodynamics of Fluorite-Structured Oxides Relevant to Nuclear Energy: A Review. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 703-721	3.2	1
25	Thermochemical Measurements of Alkali Cation Association to Hexatantalate. <i>Molecules</i> , 2018 , 23,	4.8	1
24	Effect of Annealing on Structural and Thermodynamic Properties of ThSiO-ErPO Xenotime Solid Solution. <i>Inorganic Chemistry</i> , 2021 , 60, 12020-12028	5.1	1
23	Melting temperature measurement of refractory oxide ceramics as a function of oxygen fugacity using containerless methods. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 4867-4875	3.8	О
22	Zirconium Incorporation into CaTiO3 Perovskite Prepared from Xerogels and Implication for the Fate of (Ca,Sr)TiO3 Nuclear Waste Ceramics. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 2644-26	5 3 8	О
21	Experimental and computational studies of melting of the spinel phase in the FeAl® ternary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 70, 101798	1.9	O
20	Chapmanite [Fe ₂ Sb(Si ₂ O ₅)O _{3<, thermodynamic properties and formation in low-temperature environments. <i>European Journal of</i> Mineralogy, 2021, 33, 357-371}	/s <u>ਸ਼</u> j <u>\$</u> &g	jt;{OH)]:
19	Materials of the Universe: The Final Chemical Frontier. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 1812-18	13.2	O
18	A Comparison of Order-Disorder in Several Families of Cubic Oxides. <i>Frontiers in Chemistry</i> , 2021 , 9, 719	91569	0
17	Thermochemistry of stoichiometric rare earth oxyfluorides REOF. <i>Journal of the American Ceramic Society</i> , 2022 , 105, 1472	3.8	O
16	Aqueous spray-drying synthesis of alluaudite Na2+2xFe2\(\textbf{R}\)(SO4)3 sodium insertion material: studies of electrochemical activity, thermodynamic stability, and humidity-induced phase transition. <i>Journal of Solid State Electrochemistry</i> ,1	2.6	О
15	Thermochemical Investigation of the Stability and Conversion of Nanocrystalline and High-Temperature Phases in Sodium Neodymium Fluorides. <i>Chemistry of Materials</i> , 2021 , 33, 9571-9579	9.6	O

LIST OF PUBLICATIONS

14	The Low-Temperature Heat Capacity and Thermodynamic Properties of Greigite (Fe3S4). <i>Journal of Chemical Thermodynamics</i> , 2022 , 106836	2.9	О
13	A Geologic Si-O-C Pathway to Incorporate Carbon in Silicates. <i>Geophysical Monograph Series</i> , 2020 , 47-5	541.1	
12	Innentitelbild: Energetic Insight into the Formation of Solids from Aluminum Polyoxocations (Angew. Chem. 32/2015). <i>Angewandte Chemie</i> , 2015 , 127, 9260-9260	3.6	
11	Influence of Ti4+ on the Energetics and Microstructure of SnO2 Nanoparticles. <i>Ceramic Engineering and Science Proceedings</i> , 2015 , 145-152	0.1	
10	Presentation of the Dana Medal of the Mineralogical Society of America for 2014 to Patricia Dove. <i>American Mineralogist</i> , 2014 , 99, 1188-1188	2.9	
9	Melt Energetics at High Temperature and Pressure. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 499, 185		
8	Energetics of Stable and Metastable Low Temperature Iron Oxides and Oxyhydroxides. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 481, 183		
7	Surface Energetics of Nanocrystalline YSZ Powders. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1122, 6		
6	A simple tool for handling and loading capillary tubes. <i>Powder Diffraction</i> , 2005 , 20, 259-259	1.8	
5	Thermodynamics of Crystals. <i>Eos</i> , 1999 , 80, 143	1.5	
4	Input needed for Workshop on Mineral and Rock Physics. <i>Eos</i> , 1999 , 80, 184	1.5	
3	Thermochemistry of the ZrO2BrO System: From enthalpies of formation and heat capacities of the compounds to the phase diagram. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 1425-1435	3.8	
2	Heat capacities and thermodynamic functions of neodymia and samaria doped ceria. <i>Journal of Chemical Thermodynamics</i> , 2021 , 158, 106454	2.9	
1	New worlds, new chemistry, new ceramics. International Journal of Ceramic Engineering & Science,	2	