Marc in het Panhuis

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3956403/marc-in-het-panhuis-publications-by-year.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

164 6,954 47 79 g-index

175 7,806 5.3 6.44 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
164	Self-healing hydrogel electrodes from ingestible materials. MRS Communications, 2021, 11, 342-348	2.7	2
163	Design, Modeling, and Control of a 3D Printed Monolithic Soft Robotic Finger With Embedded Pneumatic Sensing Chambers. <i>IEEE/ASME Transactions on Mechatronics</i> , 2021 , 26, 876-887	5.5	11
162	Living electrodes based on green algae in hydrogels. <i>Materials Advances</i> , 2021 , 2, 1369-1377	3.3	1
161	Celery Electronics. MRS Advances, 2020, 5, 847-853	0.7	
160	Position Control of a 3D Printed Soft Finger with Integrated Soft Pneumatic Sensing Chambers 2020 ,		6
159	Programmable enzymatic oxidation of tyrosine-lysine tetrapeptides. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 3104-3112	7.3	9
158	Modern Surfboards and Their Structural Characterization: Towards an Engineering Approach. <i>Proceedings (mdpi)</i> , 2020 , 49, 65	0.3	4
157	Numerical CFD Investigation of Shortboard Surfing: Fin Design vs. Cutback Turn Performance. <i>Proceedings (mdpi)</i> , 2020 , 49, 132	0.3	5
156	Field Research and Numerical CFD Analysis of Humpback Whale-Inspired Shortboard Fins. <i>Proceedings (mdpi)</i> , 2020 , 49, 158	0.3	1
155	Strain sensors based on conducting poly(acrylamide) hydrogels. MRS Advances, 2020, 5, 917-925	0.7	1
154	Performance evaluation of humpback whale-inspired shortboard surfing fins based on ocean wave fieldwork. <i>PLoS ONE</i> , 2020 , 15, e0232035	3.7	2
153	The rejection of mono- and di-valent ions from aquatic environment by MWNT/chitosan buckypaper composite membranes: Influences of chitosan concentrations. <i>Separation and Purification Technology</i> , 2020 , 234, 116088	8.3	19
152	Porous PNIPAm hydrogels: Overcoming diffusion-governed hydrogel actuation. <i>Sensors and Actuators A: Physical</i> , 2020 , 301, 111784	3.9	11
151	The preparation and characterization of buckypaper made from carbon nanotubes impregnated with chitosan. <i>Polymer Composites</i> , 2020 , 41, 1393-1404	3	3
150	Development of a facile one-pot synthesis method for an ingestible pH sensitive actuator. <i>MRS Advances</i> , 2020 , 5, 881-889	0.7	2
149	Nanoltration membranes prepared from pristine and functionalised multiwall carbon nanotubes/biopolymer composites for water treatment applications. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 9080-9092	5.5	9
148	3D Printed Soft Pneumatic Bending Sensing Chambers for Bilateral and Remote Control of Soft Robotic Systems 2020 ,		2

147	. IEEE/ASME Transactions on Mechatronics, 2019 , 24, 2118-2129	5.5	39
146	A 3D-Printed Omni-Purpose Soft Gripper. <i>IEEE Transactions on Robotics</i> , 2019 , 35, 1268-1275	6.5	46
145	Soft Pneumatic Sensing Chambers for Generic and Interactive Human Machine Interfaces. <i>Advanced Intelligent Systems</i> , 2019 , 1, 1900002	6	27
144	3D Printable Vacuum-Powered Soft Linear Actuators 2019 ,		6
143	Performance evaluation of a humpback whale-inspired hydrofoil design applied to surfboard fins 2019 ,		3
142	A Soft Stretchable Sensor: Towards Peripheral Nerve Signal Sensing. MRS Advances, 2018, 3, 1597-1602	0.7	4
141	Degradable 3D-Printed Hydrogels Based on Star-Shaped Copolypeptides. <i>Biomacromolecules</i> , 2018 , 19, 2691-2699	6.9	29
140	3D printing Vegemite and Marmite: Redefining B readboards <i>Journal of Food Engineering</i> , 2018 , 220, 83-88	6	69
139	Thermal actuation of hydrogels from PNIPAm, alginate, and carbon nanofibres. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2018 , 56, 46-52	2.6	11
138	Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles. <i>Soft Robotics</i> , 2018 , 5, 685-694	9.2	65
137	Disulphide crosslinked star block copolypeptide hydrogels: influence of block sequence order on hydrogel properties. <i>Polymer Chemistry</i> , 2018 , 9, 3908-3916	4.9	11
136	Nanofiltration applications of tough MWNT buckypaper membranes containing biopolymers. <i>Journal of Membrane Science</i> , 2017 , 529, 23-34	9.6	18
135	3D Printing of Transparent and Conductive Heterogeneous Hydrogel-Elastomer Systems. <i>Advanced Materials</i> , 2017 , 29, 1604827	24	280
134	Metallic Iron Effects on Coke Analog Carbon Bonding and Reactivity. <i>Steel Research International</i> , 2017 , 88, 1700039	1.6	4
133	Conducting hydrogels for edible electrodes. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 5318-5328	7.3	20
132	The Suitability of 3-D Printed Eutectic Gallium-Indium Alloy as a Heating Element for Thermally Active Hydrogels. <i>MRS Advances</i> , 2017 , 2, 335-340	0.7	
131	3D printing of tough hydrogel composites with spatially varying materials properties. <i>Additive Manufacturing</i> , 2017 , 14, 24-30	6.1	46
130	Radical Generation from the Gas-Phase Activation of Ionized Lipid Ozonides. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 1345-1358	3.5	6

129	Additive Manufacturing, Modeling and Performance Evaluation of 3D Printed Fins for Surfboards. <i>MRS Advances</i> , 2017 , 2, 913-920	0.7	8
128	Synthesis and characterisation of MWNT/chitosan and MWNT/chitosan-crosslinked buckypaper membranes for desalination. <i>Desalination</i> , 2017 , 418, 60-70	10.3	32
127	3D Printed Flexure Hinges for Soft Monolithic Prosthetic Fingers. Soft Robotics, 2016, 3, 120-133	9.2	90
126	Tissue engineering with gellan gum. <i>Biomaterials Science</i> , 2016 , 4, 1276-90	7.4	91
125	Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens. <i>Carbohydrate Polymers</i> , 2016 , 138, 229-36	10.3	48
124	Brain on a bench top. <i>Materials Today</i> , 2016 , 19, 124-125	21.8	2
123	Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel. <i>Soft Matter</i> , 2016 , 12, 2700-7	3.6	31
122	3D Printed Edible Hydrogel Electrodes. <i>MRS Advances</i> , 2016 , 1, 527-532	0.7	8
121	3D/4D Printing Hydrogel Composites: A Pathway to Functional Devices. MRS Advances, 2016 , 1, 521-526	5 0.7	28
120	Mechanical stiffness augmentation of a 3D printed soft prosthetic finger 2016 ,		9
119	Mechanical stiffness augmentation of a 3D printed soft prosthetic finger 2016 , Self-Healing Hydrogels. <i>Advanced Materials</i> , 2016 , 28, 9060-9093	24	9 701
		²⁴	
119	Self-Healing Hydrogels. <i>Advanced Materials</i> , 2016 , 28, 9060-9093 3D printing of layered brain-like structures using peptide modified gellan gum substrates.	,	701
119 118	Self-Healing Hydrogels. <i>Advanced Materials</i> , 2016 , 28, 9060-9093 3D printing of layered brain-like structures using peptide modified gellan gum substrates. <i>Biomaterials</i> , 2015 , 67, 264-73 A Comparison of Chemical and Electrochemical Synthesis of PEDOT:Dextran Sulphate for	,	701
119 118 117	Self-Healing Hydrogels. <i>Advanced Materials</i> , 2016 , 28, 9060-9093 3D printing of layered brain-like structures using peptide modified gellan gum substrates. <i>Biomaterials</i> , 2015 , 67, 264-73 A Comparison of Chemical and Electrochemical Synthesis of PEDOT:Dextran Sulphate for Bio-Application. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1717, 19 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels. <i>Macromolecular Rapid</i>	15.6	701 283 0
119 118 117	Self-Healing Hydrogels. Advanced Materials, 2016, 28, 9060-9093 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials, 2015, 67, 264-73 A Comparison of Chemical and Electrochemical Synthesis of PEDOT:Dextran Sulphate for Bio-Application. Materials Research Society Symposia Proceedings, 2015, 1717, 19 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels. Macromolecular Rapid Communications, 2015, 36, 1211-7 Printed organic electronic device components from edible materials. Materials Research Society	15.6	701 283 0
119 118 117 116	Self-Healing Hydrogels. Advanced Materials, 2016, 28, 9060-9093 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials, 2015, 67, 264-73 A Comparison of Chemical and Electrochemical Synthesis of PEDOT:Dextran Sulphate for Bio-Application. Materials Research Society Symposia Proceedings, 2015, 1717, 19 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels. Macromolecular Rapid Communications, 2015, 36, 1211-7 Printed organic electronic device components from edible materials. Materials Research Society Symposia Proceedings, 2015, 1717, 7 An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing.	15.6 4.8	701 283 0 337

111	Peptide modification of purified gellan gum. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1106-1115	7.3	36
110	Degradation behavior of ionic-covalent entanglement hydrogels. <i>Journal of Applied Polymer Science</i> , 2015 , 132,	2.9	11
109	Poly(3,4-ethylenedioxythiophene):dextran sulfate (PEDOT:DS) - a highly processable conductive organic biopolymer. <i>Acta Biomaterialia</i> , 2015 , 14, 33-42	10.8	61
108	Strain and Pressure Gauges from Tough, Conducting and Edible Hydrogels. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1795, 27-33		2
107	Filling of carbon nanotubes and nanofibres. Beilstein Journal of Nanotechnology, 2015, 6, 508-16	3	20
106	Highly conducting composite hydrogels from gellan gum, PEDOT:PSS and carbon nanofibres. <i>Synthetic Metals</i> , 2015 , 206, 61-65	3.6	24
105	Synthesis, properties, water and solute permeability of MWNT buckypapers. <i>Journal of Membrane Science</i> , 2014 , 456, 175-184	9.6	47
104	Printed ionic-covalent entanglement hydrogels from carrageenan and an epoxy amine. <i>RSC Advances</i> , 2014 , 4, 38088-38092	3.7	46
103	Three-dimensional printing fiber reinforced hydrogel composites. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 15998-6006	9.5	144
102	A New Approach to Investigating Coke Reactivity 2014 , 519-527		
101	Strong tough gels for 3D tissue constructs. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1622, 49-53		
100	Robust biopolymer based ionic-covalent entanglement hydrogels with reversible mechanical behaviour. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 4694-4702	7.3	39
99	Electrical conductivity, impedance, and percolation behavior of carbon nanofiber and carbon nanotube containing gellan gum hydrogels. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2014 , 52, 864-871	2.6	32
98	Biopolymer Based Tough and Self-Recovering Ionic-Covalent Entanglement Hydrogels. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1685, 38		
97	Reinforcing biopolymer hydrogels with ionic-covalent entanglement hydrogel microspheres. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	9
96	Enhanced gelation properties of purified gellan gum. Carbohydrate Research, 2014, 388, 125-9	2.9	58
95	Extrusion printing of ionic-covalent entanglement hydrogels with high toughness. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 4939-4946	7.3	133
94	Conducting carbon nanofibre networks: dispersion optimisation, evaporative casting and direct writing. <i>RSC Advances</i> , 2013 , 3, 21936	3.7	15

93	Bio-ink for on-demand printing of living cells. <i>Biomaterials Science</i> , 2013 , 1, 224-230	7.4	153
92	Modified gellan gum hydrogels for tissue engineering applications. <i>Soft Matter</i> , 2013 , 9, 3705	3.6	102
91	Ionic-covalent entanglement hydrogels from gellan gum, carrageenan and an epoxy-amine. <i>Soft Matter</i> , 2013 , 9, 3009	3.6	70
90	Surface analysis of lipids by mass spectrometry: more than just imaging. <i>Progress in Lipid Research</i> , 2013 , 52, 329-53	14.3	80
89	Preparation and characterisation of graphene composite hydrogels. <i>Synthetic Metals</i> , 2013 , 168, 36-42	3.6	9
88	Biofabrication: an overview of the approaches used for printing of living cells. <i>Applied Microbiology and Biotechnology</i> , 2013 , 97, 4243-58	5.7	180
87	Mechanical characteristics of swollen gellan gum hydrogels. <i>Journal of Applied Polymer Science</i> , 2013 , 130, 3374-3383	2.9	28
86	Gelapin, a degradable genipin cross-linked gelatin hydrogel. <i>RSC Advances</i> , 2013 , 3, 1073-1081	3.7	68
85	Bacterial Filtration Using Carbon Nanotube/Antibiotic Buckypaper Membranes. <i>Journal of Nanomaterials</i> , 2013 , 2013, 1-11	3.2	22
84	Electrically Conducting PEDOT:PSS IGellan Gum Hydrogels. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1569, 219-223		11
83	Mechanical Reinforcement of Wool Fiber through Polyelectrolyte Complexation with Chitosan and Gellan Gum. <i>Fibers</i> , 2013 , 1, 47-58	3.7	2
82	Polyelectrolyte complex materials consisting of antibacterial and cell-supporting layers. <i>Macromolecular Bioscience</i> , 2012 , 12, 374-82	5.5	19
81	A simple route to carbon micro- and nanorod hybrid structures by physical vapour deposition. <i>Journal Physics D: Applied Physics</i> , 2012 , 45, 395102	3	2
80	Using ambient ozone for assignment of double bond position in unsaturated lipids. <i>Analyst, The</i> , 2012 , 137, 1100-10	5	52
79	Recovery from applied strain in interpenetrating polymer network hydrogels with ionic and covalent cross-links. <i>Soft Matter</i> , 2012 , 8, 9985	3.6	126
78	Direct lipid profiling of single cells from inkjet printed microarrays. <i>Analytical Chemistry</i> , 2012 , 84, 9679	- 8 38	47
77	Conducting composite materials from the biopolymer kappa-carrageenan and carbon nanotubes. <i>Beilstein Journal of Nanotechnology</i> , 2012 , 3, 415-27	3	17

75	Synthesis, properties and water permeability of SWNT buckypapers. <i>Journal of Materials Chemistry</i> , 2012 , 22, 13800		35
74	Electrical and mechanical characteristics of buckypapers and evaporative cast films prepared using single and multi-walled carbon nanotubes and the biopolymer carrageenan. <i>Carbon</i> , 2012 , 50, 1197-120	8 ^{10.4}	39
73	Reinforced Materials Based on Chitosan, TiO2 and Ag Composites. <i>Polymers</i> , 2012 , 4, 590-599	4.5	52
72	Self-Assembled Gels from Biological and Synthetic Polyelectrolytes <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1418, 51		
71	Characterization of Gellan Gum by Capillary Electrophoresis. <i>Australian Journal of Chemistry</i> , 2012 , 65, 1156	1.2	16
70	Extrusion Printing: Extrusion Printing of Flexible Electrically Conducting Carbon Nanotube Networks (Adv. Funct. Mater. 22/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 4789-4789	15.6	4
69	Inkjet and extrusion printing of conducting poly(3,4-ethylenedioxythiophene) tracks on and embedded in biopolymer materials. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2671		41
68	Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes. <i>Nanomaterials</i> , 2011 , 1, 3-19	5.4	4
67	Highly Stretchable Conducting SIBS-P3HT Fibers. Advanced Functional Materials, 2011, 21, 955-962	15.6	70
66	Inkjet printing of self-assembling polyelectrolyte hydrogels. <i>Soft Matter</i> , 2011 , 7, 3818	3.6	15
65	Gellan gum doped polypyrrole neural prosthetic electrode coatings. Soft Matter, 2011, 7, 4690	3.6	27
64	Polyelectrolyte complex materials from chitosan and gellan gum. <i>Carbohydrate Polymers</i> , 2011 , 86, 352	-3583	33
63	Gel-carbon nanotube materials: the relationship between nanotube network connectivity and conductivity. <i>Nanoscale</i> , 2010 , 2, 1740-5	7.7	18
62	Printed hydrogel materials 2010 ,		1
61	Elastic conducting carbon nanotube-laden SIBS fibers 2010 ,		6
60	Printing nanomaterials using non-contact printing 2010 ,		1
59	Inkjet printed conducting gel-carbon nanotube materials 2010,		1
58	Extrusion printing conducting gel-carbon nanotube structures upon flexible substrates. 2010,		2

57	Conducting gel-fibres based on carrageenan, chitosan and carbon nanotubes. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7953		31
56	Fabrication of Polyaniline-Based Gas Sensors Using Piezoelectric Inkjet and Screen Printing for the Detection of Hydrogen Sulfide. <i>IEEE Sensors Journal</i> , 2010 , 10, 1419-1426	4	89
55	Imaging of human lens lipids by desorption electrospray ionization mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2010 , 21, 2095-104	3.5	53
54	Mechanical reinforcement of continuous flow spun polyelectrolyte complex fibers. <i>Macromolecular Bioscience</i> , 2009 , 9, 354-60	5.5	15
53	GelDarbon nanotube composites: the effect of carbon nanotubes on gelation and conductivity behaviour. <i>Soft Matter</i> , 2009 , 5, 1466	3.6	23
52	Influence of added hydrogen bonding agents on the chiroptical properties of chiral polyaniline. <i>Synthetic Metals</i> , 2009 , 159, 715-717	3.6	11
51	Conducting bio-materials based on gellan gum hydrogels. Soft Matter, 2009, 5, 3430	3.6	77
50	The effect of preparation conditions and biopolymer dispersants on the properties of SWNT buckypapers. <i>Journal of Materials Chemistry</i> , 2009 , 19, 9131		42
49	Nanofibrilar-polyaniline/Carbon nanotube composites: aqueous dispersions and films. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 6157-63	1.3	5
48	Carbon Nanotube Mediated Reduction in Optical Activity in Polyaniline Composite Materials. Journal of Physical Chemistry C, 2008 , 112, 1441-1445	3.8	15
47	Fabrication of chemical sensors using inkjet printing and application to gas detection 2008,		4
46	Spinning Carbon Nanotube-Gel Fibers Using Polyelectrolyte Complexation. <i>Advanced Functional Materials</i> , 2008 , 18, 3759-3764	15.6	43
45	Inkjet printed water sensitive transparent films from natural gum-carbon nanotube composites. <i>Soft Matter</i> , 2007 , 3, 840-843	3.6	58
44	Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. <i>Small</i> , 2007 , 3, 1500-3	11	118
43	Conducting textiles from single-walled carbon nanotubes. Synthetic Metals, 2007, 157, 358-362	3.6	70
42	Inkjet deposition and characterization of transparent conducting electroactive polyaniline composite films with a high carbon nanotube loading fraction. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4359		66
41	Carbon nanotubes: enhancing the polymer building blocks for intelligent materials. <i>Journal of Materials Chemistry</i> , 2006 , 16, 3598		57
40	Synthesis and Properties of Optically Active Polyaniline Carbon Nanotube Composites. Macromolecules, 2006, 39, 7324-7332	5.5	57

(2003-2006)

39	Carbon nanotube network formation from evaporating sessile drops. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 13029-36	3.4	49
38	Assembling carbon nanotubosomes using an emulsion-inversion technique. <i>Chemical Communications</i> , 2005 , 1726-8	5.8	34
37	Microscopy and spectroscopy of interactions between metallopolymers and carbon nanotubes. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 13205-9	3.4	12
36	Optically active polymer carbon nanotube composite. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 22725	5-3.4	43
35	Nanotube network transistors from peptide-wrapped single-walled carbon nanotubes. <i>Small</i> , 2005 , 1, 820-3	11	20
34	Reversible transport characteristics of multi-walled carbon nanotubes in free space. Nanotechnology, 2005, 16, 1707-1711	3.4	9
33	Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: The role of polymer molecular weight and chain conformation. <i>Physical Review B</i> , 2005 , 72,	3.3	70
32	Fabrication of carbon nanotube-based microcapsules by a colloid templating technique. <i>Nanotechnology</i> , 2005 , 16, 1522-1525	3.4	24
31	Stabilization of single-wall carbon nanotubes in fully sulfonated polyaniline. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 976-81	1.3	12
30	Nanomanipulation of Individual Carbon Nanotubes. <i>Microscopy and Microanalysis</i> , 2004 , 10, 962-963	0.5	6
29	Distributed polarizability analysis for para-nitroaniline and meta-nitroaniline: functional group and charge-transfer contributions. <i>Journal of Chemical Physics</i> , 2004 , 120, 11479-86	3.9	17
28	Characterization of Covalent Functionalized Carbon Nanotubes. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 9665-9668	3.4	26
27	Nano Patterning and Manipulation of Genetically Engineered Virus Nanoblocks. <i>Microscopy and Microanalysis</i> , 2004 , 10, 26-27	0.5	2
26	A COMPOSITE FROM SOY OIL AND CARBON NANOTUBES. <i>International Journal of Nanoscience</i> , 2003 , 02, 185-194	0.6	10
25	Characterization of an interaction between functionalized carbon nanotubes and an enzyme. <i>Journal of Nanoscience and Nanotechnology</i> , 2003 , 3, 209-13	1.3	47
24	Vaccine delivery by carbon nanotubes. <i>Chemistry and Biology</i> , 2003 , 10, 897-8		44
23	Selective Interaction in a PolymerBingle-Wall Carbon Nanotube Composite. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 478-482	3.4	120
22	Characterization of the Interaction of Gamma Cyclodextrin with Single-Walled Carbon Nanotubes. <i>Nano Letters</i> , 2003 , 3, 843-846	11.5	103

21	Atomistic Simulations with Carbon Nanotubes Iclassical, Quantum, and Transport Modeling. <i>Physica Status Solidi (B): Basic Research</i> , 2002 , 233, 49-58	1.3	4
20	Optimisation of the arc-discharge production of multi-walled carbon nanotubes. <i>Carbon</i> , 2002 , 40, 923-	9 28 .4	84
19	Distributed response analysis of conductive behavior in single molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99 Suppl 2, 6514-7	11.5	5
18	A Microscopic and Spectroscopic Study of Interactions between Carbon Nanotubes and a Conjugated Polymer. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 2210-2216	3.4	204
17	Interconnecting carbon nanotubes with an inorganic metal complex. <i>Journal of the American Chemical Society</i> , 2002 , 124, 13694-5	16.4	105
16	Controlling the optical properties of a conjugated co-polymer through variation of backbone isomerism and the introduction of carbon nanotubes. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2001 , 144, 31-41	4.7	37
15	Nonlinear photoluminescence from multiwalled carbon nanotubes 2001 , 4461, 56		1
14	Optimal polymer characteristics for nanotube solubility. <i>Synthetic Metals</i> , 2001 , 121, 1187-1188	3.6	15
13	Solubility and purity of nanotubes in arc discharge carbon powder. Synthetic Metals, 2001, 121, 1229-12	2 30 6	12
12	Nonlinear photoluminescence in multiwall carbon nanotubes. <i>Synthetic Metals</i> , 2001 , 119, 641-642	3.6	10
11	Distributed polarizability of the water dimer: Field-induced charge transfer along the hydrogen bond. <i>Journal of Chemical Physics</i> , 2001 , 114, 7951-7961	3.9	67
10	Solubility of carbon nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 633, 531		
9	Analysis of linear and quadratic optical response of mixed Langmuir B lodgett films of stearic acid and 5-CT. <i>Journal of Chemical Physics</i> , 2000 , 113, 10691-10696	3.9	6
8	Microscopic calculations of linear and quadratic optical response in model Langmuir B lodgett multilayers. <i>Journal of Chemical Physics</i> , 2000 , 112, 6763-6773	3.9	9
7	Microscopic treatment of substrate effects on linear and quadratic optical response of model Langmuir B lodgett multilayers. <i>Journal of Chemical Physics</i> , 2000 , 113, 10685-10690	3.9	10
6	Environmental effects on molecular response in materials for non-linear optics. <i>Synthetic Metals</i> , 2000 , 109, 29-32	3.6	18
5	Simulating adsorbed layers of surfactant mixtures at an oil-water interface. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1999 , 79, 9-14		3
4	A simulation study of the kinetics of passage of CO2 and N2 through the liquid/vapor interface of water. <i>Journal of Chemical Physics</i> , 1999 , 111, 2190-2199	3.9	28

LIST OF PUBLICATIONS

3	A molecular dynamics study of carbon dioxide in water: diffusion, structure and thermodynamics. <i>Molecular Physics</i> , 1998 , 94, 963-972	1.7	55
2	Fabrication of porous PDMS sponges using spontaneously self-removing sacrificial templates. <i>MRS Advances</i> ,1	0.7	
1	A 3D-printed instrumented surfboard fin for measuring fin flex. MRS Advances,1	0.7	О