List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3956403/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Selfâ€Healing Hydrogels. Advanced Materials, 2016, 28, 9060-9093.	21.0	993
2	4D Printing with Mechanically Robust, Thermally Actuating Hydrogels. Macromolecular Rapid Communications, 2015, 36, 1211-1217.	3.9	423
3	3D Printing of Transparent and Conductive Heterogeneous Hydrogel–Elastomer Systems. Advanced Materials, 2017, 29, 1604827.	21.0	364
4	3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials, 2015, 67, 264-273.	11.4	357
5	An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. Journal of Materials Chemistry B, 2015, 3, 4105-4117.	5.8	270
6	A Microscopic and Spectroscopic Study of Interactions between Carbon Nanotubes and a Conjugated Polymer. Journal of Physical Chemistry B, 2002, 106, 2210-2216.	2.6	221
7	Biofabrication: an overview of the approaches used for printing of living cells. Applied Microbiology and Biotechnology, 2013, 97, 4243-4258.	3.6	206
8	Bio-ink for on-demand printing of living cells. Biomaterials Science, 2013, 1, 224-230.	5.4	184
9	Three-Dimensional Printing Fiber Reinforced Hydrogel Composites. ACS Applied Materials & Interfaces, 2014, 6, 15998-16006.	8.0	172
10	Extrusion printing of ionic–covalent entanglement hydrogels with high toughness. Journal of Materials Chemistry B, 2013, 1, 4939.	5.8	154
11	Recovery from applied strain in interpenetrating polymer network hydrogels with ionic and covalent cross-links. Soft Matter, 2012, 8, 9985.	2.7	136
12	3D Printed Flexure Hinges for Soft Monolithic Prosthetic Fingers. Soft Robotics, 2016, 3, 120-133.	8.0	135
13	Inkjet Printing of Transparent, Electrically Conducting Singleâ€Walled Carbonâ€Nanotube Composites. Small, 2007, 3, 1500-1503.	10.0	131
14	Tissue engineering with gellan gum. Biomaterials Science, 2016, 4, 1276-1290.	5.4	130
15	Selective Interaction in a Polymerâ^'Single-Wall Carbon Nanotube Composite. Journal of Physical Chemistry B, 2003, 107, 478-482.	2.6	128
16	Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles. Soft Robotics, 2018, 5, 685-694.	8.0	121
17	Modified gellan gum hydrogels for tissue engineering applications. Soft Matter, 2013, 9, 3705.	2.7	117
18	Interconnecting Carbon Nanotubes with an Inorganic Metal Complex. Journal of the American Chemical Society, 2002, 124, 13694-13695.	13.7	116

#	Article	IF	CITATIONS
19	Characterization of the Interaction of Gamma Cyclodextrin with Single-Walled Carbon Nanotubes. Nano Letters, 2003, 3, 843-846.	9.1	112
20	Fabrication of Polyaniline-Based Gas Sensors Using Piezoelectric Inkjet and Screen Printing for the Detection of Hydrogen Sulfide. IEEE Sensors Journal, 2010, 10, 1419-1426.	4.7	107
21	A 3D-Printed Omni-Purpose Soft Gripper. IEEE Transactions on Robotics, 2019, 35, 1268-1275.	10.3	102
22	Hydrogel properties and applications. Journal of Materials Chemistry B, 2019, 7, 1523-1525.	5.8	101
23	Surface analysis of lipids by mass spectrometry: More than just imaging. Progress in Lipid Research, 2013, 52, 329-353.	11.6	95
24	Optimisation of the arc-discharge production of multi-walled carbon nanotubes. Carbon, 2002, 40, 923-928.	10.3	92
25	Gelapin, a degradable genipin cross-linked gelatin hydrogel. RSC Advances, 2013, 3, 1073-1081.	3.6	90
26	3D printing Vegemite and Marmite: Redefining "breadboards― Journal of Food Engineering, 2018, 220, 83-88.	5.2	89
27	Conducting bio-materials based on gellan gum hydrogels. Soft Matter, 2009, 5, 3430.	2.7	88
28	Enhanced gelation properties of purified gellan gum. Carbohydrate Research, 2014, 388, 125-129.	2.3	85
29	Inkjet deposition and characterization of transparent conducting electroactive polyaniline composite films with a high carbon nanotube loading fraction. Journal of Materials Chemistry, 2007, 17, 4359.	6.7	77
30	lonic-covalent entanglement hydrogels from gellan gum, carrageenan and an epoxy-amine. Soft Matter, 2013, 9, 3009.	2.7	77
31	Conducting textiles from single-walled carbon nanotubes. Synthetic Metals, 2007, 157, 358-362.	3.9	76
32	Highly Stretchable Conducting SIBSâ€₽3HT Fibers. Advanced Functional Materials, 2011, 21, 955-962.	14.9	76
33	Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: The role of polymer molecular weight and chain conformation. Physical Review B, 2005, 72, .	3.2	75
34	Poly(3,4-ethylenedioxythiophene):dextran sulfate (PEDOT:DS) – A highly processable conductive organic biopolymer. Acta Biomaterialia, 2015, 14, 33-42.	8.3	74
35	A molecular dynamics study of carbon dioxide in water: diffusion, structure and thermodynamics. Molecular Physics, 1998, 94, 963-972.	1.7	70
36	Distributed polarizability of the water dimer: Field-induced charge transfer along the hydrogen bond. Journal of Chemical Physics, 2001, 114, 7951-7961.	3.0	70

#	Article	IF	CITATIONS
37	3D Printable Linear Soft Vacuum Actuators: Their Modeling, Performance Quantification and Application in Soft Robotic Systems. IEEE/ASME Transactions on Mechatronics, 2019, 24, 2118-2129.	5.8	70
38	Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens. Carbohydrate Polymers, 2016, 138, 229-236.	10.2	69
39	Inkjet printed water sensitive transparent films from natural gum–carbon nanotube composites. Soft Matter, 2007, 3, 840-843.	2.7	65
40	Carbon nanotubes: enhancing the polymer building blocks for intelligent materials. Journal of Materials Chemistry, 2006, 16, 3598.	6.7	64
41	Synthesis and Properties of Optically Active Polyaniline Carbon Nanotube Composites. Macromolecules, 2006, 39, 7324-7332.	4.8	63
42	Imaging of human lens lipids by desorption electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2010, 21, 2095-2104.	2.8	61
43	Extrusion Printing of Flexible Electrically Conducting Carbon Nanotube Networks. Advanced Functional Materials, 2012, 22, 4790-4800.	14.9	60
44	3D printing of tough hydrogel composites with spatially varying materials properties. Additive Manufacturing, 2017, 14, 24-30.	3.0	59
45	Reinforced Materials Based on Chitosan, TiO2 and Ag Composites. Polymers, 2012, 4, 590-599.	4.5	58
46	Using ambient ozone for assignment of double bond position in unsaturated lipids. Analyst, The, 2012, 137, 1100-1110.	3.5	57
47	Carbon Nanotube Network Formation from Evaporating Sessile Drops. Journal of Physical Chemistry B, 2006, 110, 13029-13036.	2.6	56
48	Synthesis, properties, water and solute permeability of MWNT buckypapers. Journal of Membrane Science, 2014, 456, 175-184.	8.2	54
49	Direct Lipid Profiling of Single Cells from Inkjet Printed Microarrays. Analytical Chemistry, 2012, 84, 9679-9683.	6.5	53
50	Printed ionic-covalent entanglement hydrogels from carrageenan and an epoxy amine. RSC Advances, 2014, 4, 38088-38092.	3.6	53
51	Characterization of an Interaction between Functionalized Carbon Nanotubes and an Enzyme. Journal of Nanoscience and Nanotechnology, 2003, 3, 209-213.	0.9	51
52	Vaccine Delivery by Carbon Nanotubes. Chemistry and Biology, 2003, 10, 897-898.	6.0	50
53	Optically Active Polymer Carbon Nanotube Composite. Journal of Physical Chemistry B, 2005, 109, 22725-22729.	2.6	47
54	Spinning Carbon Nanotube-Gel Fibers Using Polyelectrolyte Complexation. Advanced Functional Materials, 2008, 18, 3759-3764.	14.9	46

#	Article	IF	CITATIONS
55	Robust biopolymer based ionic–covalent entanglement hydrogels with reversible mechanical behaviour. Journal of Materials Chemistry B, 2014, 2, 4694-4702.	5.8	46
56	The effect of preparation conditions and biopolymer dispersants on the properties of SWNT buckypapers. Journal of Materials Chemistry, 2009, 19, 9131.	6.7	45
57	Inkjet and extrusion printing of conducting poly(3,4-ethylenedioxythiophene) tracks on and embedded in biopolymer materials. Journal of Materials Chemistry, 2011, 21, 2671.	6.7	45
58	Peptide modification of purified gellan gum. Journal of Materials Chemistry B, 2015, 3, 1106-1115.	5.8	44
59	Soft Pneumatic Sensing Chambers for Generic and Interactive Human–Machine Interfaces. Advanced Intelligent Systems, 2019, 1, 1900002.	6.1	43
60	Synthesis and characterisation of MWNT/chitosan and MWNT/chitosan-crosslinked buckypaper membranes for desalination. Desalination, 2017, 418, 60-70.	8.2	43
61	Synthesis, properties and water permeability of SWNT buckypapers. Journal of Materials Chemistry, 2012, 22, 13800.	6.7	41
62	Electrical and mechanical characteristics of buckypapers and evaporative cast films prepared using single and multi-walled carbon nanotubes and the biopolymer carrageenan. Carbon, 2012, 50, 1197-1208.	10.3	41
63	Conducting gel-fibres based on carrageenan, chitosan and carbon nanotubes. Journal of Materials Chemistry, 2010, 20, 7953.	6.7	40
64	Controlling the optical properties of a conjugated co-polymer through variation of backbone isomerism and the introduction of carbon nanotubes. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 144, 31-41.	3.9	39
65	Mechanical characteristics of swollen gellan gum hydrogels. Journal of Applied Polymer Science, 2013, 130, 3374-3383.	2.6	39
66	Electrical conductivity, impedance, and percolation behavior of carbon nanofiber and carbon nanotube containing gellan gum hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 864-871.	2.1	38
67	Degradable 3D-Printed Hydrogels Based on Star-Shaped Copolypeptides. Biomacromolecules, 2018, 19, 2691-2699.	5.4	38
68	Assembling carbon nanotubosomes using an emulsion-inversion technique. Chemical Communications, 2005, , 1726.	4.1	37
69	Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel. Soft Matter, 2016, 12, 2700-2707.	2.7	37
70	Polyelectrolyte complex materials from chitosan and gellan gum. Carbohydrate Polymers, 2011, 86, 352-358.	10.2	36
71	Design, Modeling, and Control of a 3D Printed Monolithic Soft Robotic Finger With Embedded Pneumatic Sensing Chambers. IEEE/ASME Transactions on Mechatronics, 2021, 26, 876-887.	5.8	32
72	A simulation study of the kinetics of passage of CO2 and N2 through the liquid/vapor interface of water. Journal of Chemical Physics, 1999, 111, 2190-2199.	3.0	31

#	Article	IF	CITATIONS
73	3D/4D Printing Hydrogel Composites: A Pathway to Functional Devices. MRS Advances, 2016, 1, 521-526.	0.9	31
74	Gellan gum doped polypyrrole neural prosthetic electrode coatings. Soft Matter, 2011, 7, 4690.	2.7	29
75	Effect of flexure hinge type on a 3D printed fully compliant prosthetic finger. , 2015, , .		29
76	Conducting hydrogels for edible electrodes. Journal of Materials Chemistry B, 2017, 5, 5318-5328.	5.8	29
77	Highly conducting composite hydrogels from gellan gum, PEDOT:PSS and carbon nanofibres. Synthetic Metals, 2015, 206, 61-65.	3.9	28
78	Bacterial Filtration Using Carbon Nanotube/Antibiotic Buckypaper Membranes. Journal of Nanomaterials, 2013, 2013, 1-11.	2.7	27
79	Characterization of Covalent Functionalized Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 9665-9668.	2.6	26
80	Fabrication of carbon nanotube-based microcapsules by a colloid templating technique. Nanotechnology, 2005, 16, 1522-1525.	2.6	26
81	Gel–carbon nanotube composites: the effect of carbon nanotubes on gelation and conductivity behaviour. Soft Matter, 2009, 5, 1466.	2.7	25
82	Polyelectrolyte Complex Materials Consisting of Antibacterial and Cell‧upporting Layers. Macromolecular Bioscience, 2012, 12, 374-382.	4.1	25
83	The rejection of mono- and di-valent ions from aquatic environment by MWNT/chitosan buckypaper composite membranes: Influences of chitosan concentrations. Separation and Purification Technology, 2020, 234, 116088.	7.9	24
84	Filling of carbon nanotubes and nanofibres. Beilstein Journal of Nanotechnology, 2015, 6, 508-516.	2.8	23
85	Nanofiltration applications of tough MWNT buckypaper membranes containing biopolymers. Journal of Membrane Science, 2017, 529, 23-34.	8.2	23
86	Nanotube Network Transistors from Peptide-Wrapped Single-Walled Carbon Nanotubes. Small, 2005, 1, 820-823.	10.0	22
87	Distributed polarizability analysis for para-nitroaniline and meta-nitroaniline: Functional group and charge-transfer contributions. Journal of Chemical Physics, 2004, 120, 11479-11486.	3.0	21
88	Conducting composite materials from the biopolymer kappa-carrageenan and carbon nanotubes. Beilstein Journal of Nanotechnology, 2012, 3, 415-427.	2.8	21
89	Environmental effects on molecular response in materials for non-linear optics. Synthetic Metals, 2000, 109, 29-32.	3.9	19
90	Gel–carbon nanotube materials: the relationship between nanotube network connectivity and conductivity. Nanoscale, 2010, 2, 1740.	5.6	19

#	Article	IF	CITATIONS
91	Characterization of Gellan Gum by Capillary Electrophoresis. Australian Journal of Chemistry, 2012, 65, 1156.	0.9	18
92	Optimal polymer characteristics for nanotube solubility. Synthetic Metals, 2001, 121, 1187-1188.	3.9	17
93	Mechanical Reinforcement of Continuous Flow Spun Polyelectrolyte Complex Fibers. Macromolecular Bioscience, 2009, 9, 354-360.	4.1	16
94	Inkjet printing of self-assembling polyelectrolyte hydrogels. Soft Matter, 2011, 7, 3818.	2.7	16
95	Porous PNIPAm hydrogels: Overcoming diffusion-governed hydrogel actuation. Sensors and Actuators A: Physical, 2020, 301, 111784.	4.1	16
96	Nanoï¬Itration membranes prepared from pristine and functionalised multiwall carbon nanotubes/biopolymer composites for water treatment applications. Journal of Materials Research and Technology, 2020, 9, 9080-9092.	5.8	16
97	Stabilization of Single-Wall Carbon Nanotubes in Fully Sulfonated Polyaniline. Journal of Nanoscience and Nanotechnology, 2004, 4, 976-981.	0.9	15
98	Carbon Nanotube Mediated Reduction in Optical Activity in Polyaniline Composite Materials. Journal of Physical Chemistry C, 2008, 112, 1441-1445.	3.1	15
99	Conducting carbon nanofibre networks: dispersion optimisation, evaporative casting and direct writing. RSC Advances, 2013, 3, 21936.	3.6	15
100	Thermal actuation of hydrogels from PNIPAm, alginate, and carbon nanofibres. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 46-52.	2.1	15
101	Degradation behavior of ionicâ€covalent entanglement hydrogels. Journal of Applied Polymer Science, 2015, 132, .	2.6	14
102	Mechanical stiffness augmentation of a 3D printed soft prosthetic finger. , 2016, , .		14
103	Solubility and purity of nanotubes in arc discharge carbon powder. Synthetic Metals, 2001, 121, 1229-1230.	3.9	13
104	Microscopy and Spectroscopy of Interactions between Metallopolymers and Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 13205-13209.	2.6	13
105	Electrically Conducting PEDOT:PSS – Gellan Gum Hydrogels. Materials Research Society Symposia Proceedings, 2013, 1569, 219-223.	0.1	13
106	Disulphide crosslinked star block copolypeptide hydrogels: influence of block sequence order on hydrogel properties. Polymer Chemistry, 2018, 9, 3908-3916.	3.9	12
107	Additive Manufacturing, Modeling and Performance Evaluation of 3D Printed Fins for Surfboards. MRS Advances, 2017, 2, 913-920.	0.9	12
108	A COMPOSITE FROM SOY OIL AND CARBON NANOTUBES. International Journal of Nanoscience, 2003, 02, 185-194.	0.7	11

6

#	Article	IF	CITATIONS
109	Influence of added hydrogen bonding agents on the chiroptical properties of chiral polyaniline. Synthetic Metals, 2009, 159, 715-717.	3.9	11
110	3D Printable Vacuum-Powered Soft Linear Actuators. , 2019, , .		11
111	Microscopic treatment of substrate effects on linear and quadratic optical response of model Langmuir–Blodgett multilayers. Journal of Chemical Physics, 2000, 113, 10685-10690.	3.0	10
112	Nonlinear photoluminescence in multiwall carbon nanotubes. Synthetic Metals, 2001, 119, 641-642.	3.9	10
113	Reversible transport characteristics of multi-walled carbon nanotubes in free space. Nanotechnology, 2005, 16, 1707-1711.	2.6	10
114	Radical Generation from the Gas-Phase Activation of Ionized Lipid Ozonides. Journal of the American Society for Mass Spectrometry, 2017, 28, 1345-1358.	2.8	10
115	Position Control of a 3D Printed Soft Finger with Integrated Soft Pneumatic Sensing Chambers. , 2020, , .		10
116	Microscopic calculations of linear and quadratic optical response in model Langmuir–Blodgett multilayers. Journal of Chemical Physics, 2000, 112, 6763-6773.	3.0	9
117	Preparation and characterisation of graphene composite hydrogels. Synthetic Metals, 2013, 168, 36-42.	3.9	9
118	Reinforcing biopolymer hydrogels with ionicâ€covalent entanglement hydrogel microspheres. Journal of Applied Polymer Science, 2014, 131, .	2.6	9
119	3D Printed Edible Hydrogel Electrodes. MRS Advances, 2016, 1, 527-532.	0.9	9
120	Programmable enzymatic oxidation of tyrosine–lysine tetrapeptides. Journal of Materials Chemistry B, 2020, 8, 3104-3112.	5.8	9
121	Metallic Iron Effects on Coke Analog Carbon Bonding and Reactivity. Steel Research International, 2017, 88, 1700039.	1.8	8
122	Nanofibrilar-Polyaniline/Carbon Nanotube Composites: Aqueous Dispersions and Films. Journal of Nanoscience and Nanotechnology, 2009, 9, 6157-6163.	0.9	7
123	Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram, Mechanical Behavior, and In Vivo Studies. Polymers, 2021, 13, 3281.	4.5	7
124	Analysis of linear and quadratic optical response of mixed Langmuir–Blodgett films of stearic acid and 5-CT. Journal of Chemical Physics, 2000, 113, 10691-10696.	3.0	6
125	Nanomanipulation of Individual Carbon Nanotubes. Microscopy and Microanalysis, 2004, 10, 962-963.	0.4	6

126 Fabrication of chemical sensors using inkjet printing and application to gas detection. , 2008, , .

#	Article	IF	CITATIONS
127	Elastic conducting carbon nanotube-laden SIBS fibers. , 2010, , .		6
128	Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes. Nanomaterials, 2011, 1, 3-19.	4.1	6
129	Modern Surfboards and Their Structural Characterization: Towards an Engineering Approach. Proceedings (mdpi), 2020, 49, .	0.2	6
130	Numerical CFD Investigation of Shortboard Surfing: Fin Design vs. Cutback Turn Performance. Proceedings (mdpi), 2020, 49, 132.	0.2	6
131	Living electrodes based on green algae in hydrogels. Materials Advances, 2021, 2, 1369-1377.	5.4	6
132	Distributed response analysis of conductive behavior in single molecules. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6514-6517.	7.1	5
133	Atomistic Simulations with Carbon Nanotubes - Classical, Quantum, and Transport Modeling. Physica Status Solidi (B): Basic Research, 2002, 233, 49-58.	1.5	5
134	Extrusion Printing: Extrusion Printing of Flexible Electrically Conducting Carbon Nanotube Networks (Adv. Funct. Mater. 22/2012). Advanced Functional Materials, 2012, 22, 4789-4789.	14.9	5
135	Printed organic electronic device components from edible materials. Materials Research Society Symposia Proceedings, 2015, 1717, 7.	0.1	5
136	Performance evaluation of humpback whale-inspired shortboard surfing fins based on ocean wave fieldwork. PLoS ONE, 2020, 15, e0232035.	2.5	5
137	Performance evaluation of a humpback whale-inspired hydrofoil design applied to surfboard fins. , 2019, , .		5
138	Strain and Pressure Gauges from Tough, Conducting and Edible Hydrogels. Materials Research Society Symposia Proceedings, 2015, 1795, 27-33.	0.1	4
139	A Soft Stretchable Sensor: Towards Peripheral Nerve Signal Sensing. MRS Advances, 2018, 3, 1597-1602.	0.9	4
140	The preparation and characterization of buckypaper made from carbon nanotubes impregnated with chitosan. Polymer Composites, 2020, 41, 1393-1404.	4.6	4
141	3D Printed Soft Pneumatic Bending Sensing Chambers for Bilateral and Remote Control of Soft Robotic Systems. , 2020, , .		4
142	Simulating adsorbed layers of surfactant mixtures at an oil-water interface. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 9-14.	0.6	3
143	Extrusion printing conducting gel-carbon nanotube structures upon flexible substrates , 2010, , .		3
144	A simple route to carbon micro- and nanorod hybrid structures by physical vapour deposition. Journal Physics D: Applied Physics, 2012, 45, 395102.	2.8	3

#	Article	IF	CITATIONS
145	Self-healing hydrogel electrodes from ingestible materials. MRS Communications, 2021, 11, 342-348.	1.8	3
146	Nano Patterning and Manipulation of Genetically Engineered Virus Nanoblocks. Microscopy and Microanalysis, 2004, 10, 26-27.	0.4	2
147	Printed hydrogel materials. , 2010, , .		2
148	Mechanical Reinforcement of Wool Fiber through Polyelectrolyte Complexation with Chitosan and Gellan Gum. Fibers, 2013, 1, 47-58.	4.0	2
149	A Comparison of Chemical and Electrochemical Synthesis of PEDOT:Dextran Sulphate for Bio-Application. Materials Research Society Symposia Proceedings, 2015, 1717, 19.	0.1	2
150	Sonication-induced effects on carbon nanofibres in composite materials. RSC Advances, 2015, 5, 19587-19595.	3.6	2
151	Brain on a bench top. Materials Today, 2016, 19, 124-125.	14.2	2
152	Development of a facile one-pot synthesis method for an ingestible pH sensitive actuator. MRS Advances, 2020, 5, 881-889.	0.9	2
153	Field Research and Numerical CFD Analysis of Humpback Whale-Inspired Shortboard Fins. Proceedings (mdpi), 2020, 49, 158.	0.2	2
154	A 3D-printed instrumented surfboard fin for measuring fin flex. MRS Advances, 2022, 7, 175-179.	0.9	2
155	Nonlinear photoluminescence from multiwalled carbon nanotubes. , 2001, 4461, 56.		1
156	Covalent attachment of a ruthenium complex to multiwall carbon nanotubes. , 2003, , .		1
157	Controlled deposition of polymer carbon Nanotube composites through inkjet printing. Optoelectronic and Microelectronic Materials and Devices (COMMAD), Conference on, 2008, , .	0.0	1
158	Printing nanomaterials using non-contact printing. , 2010, , .		1
159	Inkjet printed conducting gel-carbon nanotube materials. , 2010, , .		1
160	Diffusion of vitamin B <inf>12</inf> in gellan gum-carbon nanotube hydrogels. , 2010, , .		1
161	The Suitability of 3-D Printed Eutectic Gallium-Indium Alloy as a Heating Element for Thermally Active Hydrogels. MRS Advances, 2017, 2, 335-340.	0.9	1
162	Strain sensors based on conducting poly(acrylamide) hydrogels. MRS Advances, 2020, 5, 917-925.	0.9	1

#	Article	IF	CITATIONS
163	Fabrication of porous PDMS sponges using spontaneously self-removing sacrificial templates. MRS Advances, 2022, 7, 495-498.	0.9	1
164	Solubility of carbon nanotubes. Materials Research Society Symposia Proceedings, 2000, 633, 531.	0.1	0
165	Spectroscopic analysis of the intermolecular interactions of gamma cyclodextrin and carbon nanotubes. , 2003, , .		0
166	Inkjet printing: a viable tool for processing polymer carbon nanotube composites. , 2007, , .		0
167	Hydrogel electrode materials. , 2010, , .		0
168	Self-Assembled Gels from Biological and Synthetic Polyelectrolytes Materials Research Society Symposia Proceedings, 2012, 1418, 51.	0.1	0
169	A New Approach to Investigating Coke Reactivity. , 2014, , 519-527.		0
170	Strong tough gels for 3D tissue constructs. Materials Research Society Symposia Proceedings, 2014, 1622, 49-53.	0.1	0
171	Biopolymer Based Tough and Self-Recovering Ionic-Covalent Entanglement Hydrogels. Materials Research Society Symposia Proceedings, 2014, 1685, 38.	0.1	0
172	Electrical conductivity and impedance behaviour of hydrogel materials. , 2014, , .		0
173	Celery Electronics. MRS Advances, 2020, 5, 847-853.	0.9	0
174	3D printing of surgical staples. MRS Advances, 2022, 7, 489-494.	0.9	0