## Michael G Leitner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3956255/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Optimized Tuning of Auditory Inner Hair Cells to Encode Complex Sound through Synergistic Activity of Six Independent K+ Current Entities. Cell Reports, 2020, 32, 107869.                                     | 6.4 | 18        |
| 2  | Chloride $\hat{a} \in $ The Underrated Ion in Nociceptors. Frontiers in Neuroscience, 2020, 14, 287.                                                                                                           | 2.8 | 35        |
| 3  | The N-terminal homology (ENTH) domain of Epsin 1 is a sensitive reporter of physiological PI(4,5)P2<br>dynamics. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 433-442.    | 2.4 | 7         |
| 4  | Histidine at position 462 determines the low quinine sensitivity of etherâ€Ãâ€goâ€go channel superfamily<br>member K <sub>v</sub> 12.1. British Journal of Pharmacology, 2019, 176, 2708-2723.                 | 5.4 | 2         |
| 5  | β-Secretase BACE1 Is Required for Normal Cochlear Function. Journal of Neuroscience, 2019, 39, 9013-9027.                                                                                                      | 3.6 | 13        |
| 6  | A choreography of intracellular Ca <sup>2+</sup> and extracellular ATP to refine auditory nociceptors before hearing. EMBO Journal, 2019, 38, .                                                                | 7.8 | 0         |
| 7  | K <sub>v</sub> 12.1 channels are not sensitive to G <sub>q</sub> PCR-triggered activation of phospholipase Cl². Channels, 2018, 12, 228-239.                                                                   | 2.8 | 2         |
| 8  | Inverse Modulation of Neuronal Kv12.1 and Kv11.1 Channels by 4-Aminopyridine and NS1643. Frontiers in<br>Molecular Neuroscience, 2018, 11, 11.                                                                 | 2.9 | 12        |
| 9  | Identification of Chloride Channels CLCN3 and CLCN5 Mediating the Excitatory Clâ^' Currents Activated by Sphingosine-1-Phosphate in Sensory Neurons. Frontiers in Molecular Neuroscience, 2018, 11, 33.        | 2.9 | 9         |
| 10 | A126 in the active site and TI167/168 in the TI loop are essential determinants of the substrate specificity of PTEN. Cellular and Molecular Life Sciences, 2018, 75, 4235-4250.                               | 5.4 | 7         |
| 11 | Identification of Cav2–PKCβ and Cav2–NOS1 complexes as entities for ultrafast electrochemical coupling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5707-5712. | 7.1 | 4         |
| 12 | The <scp>BEACH</scp> protein <scp>LRBA</scp> is required for hair bundle maintenance in cochlear hair cells and for hearing. EMBO Reports, 2017, 18, 2015-2029.                                                | 4.5 | 12        |
| 13 | Anti-nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels. ELife, 2017, 6, .                                                                     | 6.0 | 80        |
| 14 | Direct modulation of TRPM4 and TRPM3 channels by the phospholipase C inhibitor U73122. British<br>Journal of Pharmacology, 2016, 173, 2555-2569.                                                               | 5.4 | 48        |
| 15 | Ion channel regulation by phosphoinositides analyzed with VSPs—PI(4,5)P2 affinity, phosphoinositide<br>selectivity, and PI(4,5)P2 pool accessibility. Frontiers in Pharmacology, 2015, 6, 127.                 | 3.5 | 27        |
| 16 | A method to control phosphoinositides and to analyze PTEN function in living cells using voltage sensitive phosphatases. Frontiers in Pharmacology, 2015, 6, 68.                                               | 3.5 | 18        |
| 17 | Phosphoinositide dynamics in the postsynaptic membrane compartment: Mechanisms and experimental approach. European Journal of Cell Biology, 2015, 94, 401-414.                                                 | 3.6 | 11        |
| 18 | Regulation of the transient receptor potential channel TRPM3 by phosphoinositides. Journal of General Physiology, 2015, 146, 51-63.                                                                            | 1.9 | 62        |

MICHAEL G LEITNER

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Discovery and functional characterization of a neomorphic PTEN mutation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13976-13981.                             | 7.1  | 38        |
| 20 | Sphingosine 1-Phosphate to p38 Signaling via S1P <sub>1</sub> Receptor and Gαi/o Evokes Augmentation of Capsaicin-Induced Ionic Currents in Mouse Sensory Neurons. Molecular Pain, 2014, 10, 1744-8069-10-74. | 2.1  | 19        |
| 21 | Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors. Nature Communications, 2014, 5, 5540.                                                                                  | 12.8 | 75        |
| 22 | In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology, 2014, , .                                                                                                                                | 0.2  | 8         |
| 23 | Zebrafish in auditory research: are fish better than mice?. Journal of Physiology, 2014, 592, 4611-4612.                                                                                                      | 2.9  | 4         |
| 24 | In Vitro Models for Ototoxic Research. Methods in Pharmacology and Toxicology, 2014, , 199-222.                                                                                                               | 0.2  | 1         |
| 25 | A human phospholipid phosphatase activated by a transmembrane control module. Journal of Lipid<br>Research, 2012, 53, 2266-2274.                                                                              | 4.2  | 22        |
| 26 | Restoration of ion channel function in deafness ausing KCNQ4 mutants by synthetic channel openers.<br>British Journal of Pharmacology, 2012, 165, 2244-2259.                                                  | 5.4  | 36        |
| 27 | Probing the regulation of TASK potassium channels by PI(4,5)P <sub>2</sub> with switchable phosphatases. Journal of Physiology, 2011, 589, 3149-3162.                                                         | 2.9  | 42        |
| 28 | Aminoglycosides Inhibit KCNQ4 Channels in Cochlear Outer Hair Cells via Depletion of<br>Phosphatidylinositol(4,5)bisphosphate. Molecular Pharmacology, 2011, 79, 51-60.                                       | 2.3  | 54        |
| 29 | Controlling the Activity of a Phosphatase and Tensin Homolog (PTEN) by Membrane Potential. Journal of Biological Chemistry, 2011, 286, 17945-17953.                                                           | 3.4  | 38        |
| 30 | Genetic Evidence for Involvement of Neuronally Expressed S1P1 Receptor in Nociceptor Sensitization and Inflammatory Pain. PLoS ONE, 2011, 6, e17268.                                                          | 2.5  | 61        |