Christopher N Boddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3956097/publications.pdf

Version: 2024-02-01

70 papers 3,154 citations

218677 26 h-index 53 g-index

78 all docs 78 docs citations

78 times ranked 3723 citing authors

#	Article	IF	CITATIONS
1	RpoN-Based stapled peptides with improved DNA binding suppress <i>Pseudomonas aeruginosa</i> virulence. RSC Medicinal Chemistry, 2022, 13, 445-455.	3.9	2
2	Accessory Chromosome-Acquired Secondary Metabolism in Plant Pathogenic Fungi: The Evolution of Biotrophs Into Host-Specific Pathogens. Frontiers in Microbiology, 2021, 12, 664276.	3.5	17
3	Armeniaspirols inhibit the AAA+ proteases ClpXP and ClpYQ leading to cell division arrest in Gram-positive bacteria. Cell Chemical Biology, 2021, 28, 1703-1715.e11.	5.2	8
4	Apicidin biosynthesis is linked to accessory chromosomes in Fusarium poae isolates. BMC Genomics, 2021, 22, 591.	2.8	7
5	A metabolomic study of vegetative incompatibility in Cryphonectria parasitica. Fungal Genetics and Biology, 2021, 157, 103633.	2.1	3
6	Evolution of the Ergot Alkaloid Biosynthetic Gene Cluster Results in Divergent Mycotoxin Profiles in Claviceps purpurea Sclerotia. Toxins, 2021, 13, 861.	3.4	7
7	Thioesterase from Cereulide Biosynthesis Is Responsible for Oligomerization and Macrocyclization of a Linear Tetradepsipeptide. Journal of Natural Products, 2020, 83, 1990-1997.	3.0	13
8	Whole Genome Sequencing and Metabolomic Study of Cave Streptomyces Isolates ICC1 and ICC4. Frontiers in Microbiology, 2019, 10, 1020.	3.5	36
9	Trapping biosynthetic acyl-enzyme intermediates with encoded 2,3-diaminopropionic acid. Nature, 2019, 565, 112-117.	27.8	78
10	Draft Genome Sequence of the Type Strain Streptomyces armeniacus ATCC 15676. Microbiology Resource Announcements, 2018, 7, .	0.6	2
11	Chemoenzymatic macrocycle synthesis using resorcylic acid lactone thioesterase domains. Organic and Biomolecular Chemistry, 2018, 16, 5771-5779.	2.8	9
12	Inhibition of Bacterial Gene Transcription with an RpoN-Based Stapled Peptide. Cell Chemical Biology, 2018, 25, 1059-1066.e4.	5.2	15
13	Mapping an amazing thicket. Nature Chemical Biology, 2017, 13, 6-7.	8.0	4
14	Inducible T7 RNA Polymerase-mediated Multigene Expression System, pMGX. Journal of Visualized Experiments, 2017, , .	0.3	0
15	Sampling Terrestrial Environments for Bacterial Polyketides. Molecules, 2017, 22, 707.	3.8	10
16	N-Acetylneuraminic Acid Production in <i>Escherichia coli</i> Lacking N-Acetylglucosamine Catabolic Machinery. Chemical Engineering Communications, 2016, 203, 1326-1335.	2.6	5
17	First-in-class small molecule potentiators of cancer virotherapy. Scientific Reports, 2016, 6, 26786.	3.3	25
18	Total Biosynthesis of Legionaminic Acid, a Bacterial Sialic Acid Analogue. Angewandte Chemie, 2016, 128, 12197-12200.	2.0	4

#	Article	IF	CITATIONS
19	Total Biosynthesis of Legionaminic Acid, a Bacterial Sialic Acid Analogue. Angewandte Chemie - International Edition, 2016, 55, 12018-12021.	13.8	26
20	Portable, On-Demand Biomolecular Manufacturing. Cell, 2016, 167, 248-259.e12.	28.9	292
21	Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: logic gate or a victim of fate?. Natural Product Reports, 2016, 33, 183-202.	10.3	131
22	Towards a characterization of the structural determinants of specificity in the macrocyclizing thioesterase for deoxyerythronolide B biosynthesis. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 486-497.	2.4	13
23	Diastereoseletive Transannular Oxa-Conjugate Addition Generates the 2,6-cis-Disubstituted Tetrahydropyran of Neopeltolide. Journal of Organic Chemistry, 2016, 81, 415-423.	3.2	9
24	The Use of ClusterMine360 for the Analysis of Polyketide and Nonribosomal Peptide Biosynthetic Pathways. Methods in Molecular Biology, 2016, 1401, 233-252.	0.9	10
25	Modulation of antifreeze activity and the effect upon post-thaw HepG2 cell viability after cryopreservation. Cryobiology, 2015, 70, 79-89.	0.7	21
26	Thermoplasmonic ssDNA Dynamic Release from Gold Nanoparticles Examined with Advanced Fluorescence Microscopy. Journal of Physical Chemistry Letters, 2015, 6, 1499-1503.	4.6	10
27	Draft Genome Sequence of <i>Streptomyces</i> sp. Strain PBH53, Isolated from an Urban Environment. Genome Announcements, 2015, 3, .	0.8	3
28	An Evolutionary Model Encompassing Substrate Specificity and Reactivity of Type I Polyketide Synthase Thioesterases. ChemBioChem, 2014, 15, 2656-2661.	2.6	24
29	Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 443-450.	3.0	72
30	Hexanes/acetonitrile: a binary solvent system for the efficient monosilylation of symmetric primary and secondary diols. Tetrahedron Letters, 2014, 55, 2600-2602.	1.4	7
31	Genetic Analysis of the Assimilation of C ₅ -Dicarboxylic Acids in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 2014, 196, 2543-2551.	2.2	26
32	Habitat-specific type I polyketide synthases in soils and street sediments. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 75-85.	3.0	21
33	Salvadenosine, a 5′-Deoxy-5′-(methylthio) Nucleoside from the Bahamian Tunicate <i>Didemnum</i> sp Journal of Organic Chemistry, 2014, 79, 9992-9997.	3.2	12
34	Resorcylic Acid Lactone Biosynthesis Relies on a Stereotolerant Macrocyclizing Thioesterase. Organic Letters, 2014, 16, 5858-5861.	4.6	25
35	Structural Study of Thioesterase Domains in Complex with Covalent Inhibitors. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C436-C436.	0.1	0
36	Biosynthesis of ebelactone A: isotopic tracer, advanced precursor and genetic studies reveal a thioesterase-independent cyclization to give a polyketide β-lactone. Journal of Antibiotics, 2013, 66, 421-430.	2.0	21

#	Article	IF	CITATIONS
37	The role of transcription in heterologous expression of polyketides in bacterial hosts. Natural Product Reports, 2013, 30, 1391.	10.3	25
38	Elucidation of Gephyronic Acid Biosynthetic Pathway Revealed Unexpected SAM-Dependent Methylations. Journal of Natural Products, 2013, 76, 2269-2276.	3.0	29
39	Gene PA2449 Is Essential for Glycine Metabolism and Pyocyanin Biosynthesis in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 2013, 195, 2087-2100.	2.2	46
40	Alternative Sigma Factor Over-Expression Enables Heterologous Expression of a Type II Polyketide Biosynthetic Pathway in Escherichia coli. PLoS ONE, 2013, 8, e64858.	2.5	53
41	ClusterMine360: a database of microbial PKS/NRPS biosynthesis. Nucleic Acids Research, 2012, 41, D402-D407.	14.5	113
42	Non-canonical regioisomerizations and a †Diels†Alderase†are likely essential in the biosynthesis of Spiculoic acid A. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5253-5256.	2.2	3
43	6-Deoxyerythronolide B Synthase Thioesterase-Catalyzed Macrocyclization Is Highly Stereoselective. Organic Letters, 2012, 14, 2278-2281.	4.6	35
44	Land Use Intensity Controls Actinobacterial Community Structure. Microbial Ecology, 2011, 61, 286-302.	2.8	52
45	Reinvestigation of Coenzyme Q10 Isolation from <i>Sporidiobolus johnsonii</i> . Chemistry and Biodiversity, 2011, 8, 1033-1051.	2.1	15
46	Process Improvements for the Manufacture of Tenofovir Disoproxil Fumarate at Commercial Scale. Organic Process Research and Development, 2010, 14, 1194-1201.	2.7	47
47	Rapid, mild method for phosphonate diester hydrolysis: development of a one-pot synthesis of tenofovir disoproxil fumarate from tenofovir diethyl ester. Tetrahedron, 2010, 66, 8137-8144.	1.9	22
48	Heterologous Expression of the Oxytetracycline Biosynthetic Pathway in <i>Myxococcus xanthus </i> Applied and Environmental Microbiology, 2010, 76, 2681-2683.	3.1	31
49	Polyketide synthase thioesterases catalyze rapid hydrolysis of peptidyl thioesters. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1413-1415.	2.2	9
50	A Thioesterase from an Iterative Fungal Polyketide Synthase Shows Macrocyclization and Cross Coupling Activity and May Play a Role in Controlling Iterative Cycling through Product Offloading. Biochemistry, 2009, 48, 6288-6290.	2.5	46
51	Biomimetic Transannular Oxa-Conjugate Addition Approach to the 2,6-Disubstituted Dihydropyran of Laulimalide Yields an Unprecedented Transannular Oxetane. Journal of Organic Chemistry, 2009, 74, 1454-1463.	3.2	18
52	Orthogonal ligation: a three piece assembly of a PNA–peptide–PNA conjugate. Chemical Communications, 2008, , 2785.	4.1	7
53	Examining the Role of Hydrogen Bonding Interactions in the Substrate Specificity for the Loading Step of Polyketide Synthase Thioesterase Domains. Biochemistry, 2008, 47, 11793-11803.	2.5	45
54	Sialic acid and N-acyl sialic acid analog production by fermentation of metabolically and genetically engineered Escherichia coli. Organic and Biomolecular Chemistry, 2007, 5, 1903.	2.8	31

#	Article	IF	Citations
55	A New Mechanism for Benzopyrone Formation in Aromatic Polyketide Biosynthesis. Journal of the American Chemical Society, 2007, 129, 9304-9305.	13.7	38
56	The thioesterase domain from the pimaricin and erythromycin biosynthetic pathways can catalyze hydrolysis of simple thioester substrates. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3034-3037.	2.2	36
57	Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli. , 2006, 2, 423-428.		194
58	Sweetening Cyclic Peptide Libraries. ChemInform, 2005, 36, no.	0.0	0
59	Sweetening Cyclic Peptide Libraries. Chemistry and Biology, 2004, 11, 1599-1600.	6.0	8
60	Precursor-Directed Biosynthesis of Epothilone inEscherichiacoli. Journal of the American Chemical Society, 2004, 126, 7436-7437.	13.7	60
61	Epothilone C Macrolactonization and Hydrolysis Are Catalyzed by the Isolated Thioesterase Domain of Epothilone Polyketide Synthase. Journal of the American Chemical Society, 2003, 125, 3428-3429.	13.7	80
62	Understanding Substrate Specificity of Polyketide Synthase Modules by Generating Hybrid Multimodular Synthases. Journal of Biological Chemistry, 2003, 278, 42020-42026.	3.4	65
63	Atropselective Macrocyclization of Diaryl Ether Ring Systems: Application to the Synthesis of Vancomycin Model Systems. Journal of the American Chemical Society, 2002, 124, 10451-10455.	13.7	96
64	Behind Enemy Lines. Scientific American, 2001, 284, 54-61.	1.0	52
65	Does CIP Nomenclature Adequately Handle Molecules with Multiple Stereoelements? A Case Study of Vancomycin and Cognates. Angewandte Chemie - International Edition, 2001, 40, 701-704.	13.8	1
66	Chemistry, Biology, and Medicine of the Glycopeptide Antibiotics. Angewandte Chemie - International Edition, 1999, 38, 2096-2152.	13.8	664
67	Total synthesis of crystalline (±)-fredericamycin A. Studies in Natural Products Chemistry, 1995, , 27-74.	1.8	3
68	Total Synthesis of Crystalline (.+)-Fredericamycin A. Use of Radical Spirocyclization. Journal of the American Chemical Society, 1994, 116, 11275-11286.	13.7	73
69	Total synthesis of $(\hat{A}\pm)$ -fredericamycin A. Use of radical spirocyclization. Journal of the Chemical Society Chemical Communications, 1992, , 1489-1490.	2.0	21
70	Armeniaspirol analogues with more potent Gram-positive antibiotic activity show enhanced inhibition of the ATP-dependent proteases ClpXP and ClpYQ. RSC Medicinal Chemistry, 0, , .	3.9	2