Abdelhamid Khaldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3955887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The caper (Capparis L.): Ethnopharmacology, phytochemical and pharmacological properties. FìtoterapìA¢, 2011, 82, 93-101.	2.2	116
2	Phenolic Compounds and Vitamin Antioxidants of Caper (Capparis spinosa). Plant Foods for Human Nutrition, 2010, 65, 260-265.	3.2	97
3	Evolution-based approach needed for the conservation and silviculture of peripheral forest tree populations. Forest Ecology and Management, 2016, 375, 66-75.	3.2	97
4	Fatty acids from seeds of Pinus pinea L.: Composition and population profiling. Phytochemistry, 2005, 66, 1729-1735.	2.9	80
5	The analysis of crude and purified locust bean gum: A comparison of samples from different carob tree populations in Tunisia. Food Chemistry, 2007, 101, 1508-1515.	8.2	69
6	Phytochemicals and antioxidant activities of Rhus tripartitum (Ucria) fruits depending on locality and different stages of maturity. Food Chemistry, 2014, 160, 98-103.	8.2	64
7	Screening of Natural Antioxidants from Selected Medicinal Plants. International Journal of Food Properties, 2013, 16, 1117-1126.	3.0	61
8	Capparis spinosa leaves extract: Source of bioantioxidants with nephroprotective and hepatoprotective effects. Biomedicine and Pharmacotherapy, 2017, 87, 171-179.	5.6	61
9	Phenolic profile and antioxidant activity of Capparis spinosa seeds harvested from different wild habitats. Industrial Crops and Products, 2015, 76, 930-935.	5.2	54
10	Carotenoid and Tocopherol Composition of Leaves, Buds, and Flowers of <i>Capparis spinosa</i> Grown Wild in Tunisia. Journal of Agricultural and Food Chemistry, 2009, 57, 5381-5385.	5.2	45
11	Plant diversity in different bioclimatic zones in Tunisia. Journal of Asia-Pacific Biodiversity, 2016, 9, 56-62.	0.4	40
12	FATTY ACIDS, TOCOPHEROLS AND CAROTENOIDS FROM SEEDS OF TUNISIAN CAPER " <i>CAPPARIS SPINOSA</i> ― Journal of Food Lipids, 2009, 16, 452-464.	1.0	34
13	Variation in essential oil composition and biological activities of <i>Foeniculum vulgare</i> Mill. populations growing widely in Tunisia. Journal of Food Biochemistry, 2018, 42, e12532.	2.9	32
14	Protein, Lipid, Aliphatic and Triterpenic Alcohol Content of Caper Seeds " <i>Capparis spinosa</i> ― JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 265-270.	1.9	29
15	Biological activity evaluation of the oils from <i>Laurus nobilis</i> of Tunisia and Algeria extracted by supercritical carbon dioxide. Natural Product Research, 2009, 23, 230-237.	1.8	28
16	PHENOLIC COMPOUNDS, TOCOPHEROLS, CAROTENOIDS AND VITAMIN C OF COMMERCIAL CAPER. Journal of Food Biochemistry, 2011, 35, 472-483.	2.9	28
17	Schinus terebinthifolius vs Schinus molle: A comparative study of the effect of species and location on the phytochemical content of fruits. Industrial Crops and Products, 2018, 122, 559-565.	5.2	28
18	Chemical compounds from Phoenician juniper berries (<i>Juniperus phoenicea</i>). Natural Product Research, 2011, 25, 1733-1742.	1.8	27

#	Article	IF	CITATIONS
19	Protective effects of phytochemicals of Capparis spinosa seeds with cisplatin and CCl4 toxicity in mice. Food Bioscience, 2019, 28, 42-48.	4.4	25
20	Variation in protein and oil content and fatty acid composition of Rhus tripartitum fruits collected at different maturity stages in different locations. Industrial Crops and Products, 2014, 59, 197-201.	5.2	23
21	<i>In vitro</i> antimicrobial activity of <i>Pistacia lentiscus</i> L. edible oil and phenolic extract. Natural Product Research, 2015, 29, 565-570.	1.8	23
22	Effect of growing area on tocopherols, carotenoids and fatty acid composition ofPistacia lentiscusedible oil. Natural Product Research, 2014, 28, 1225-1230.	1.8	21
23	Fatty Acid Composition of Two Tunisian Pine Seed Oils. Biotechnology Progress, 2008, 21, 998-1001.	2.6	20
24	Dendroecological study of Pinus halepensis and Pinus pinea in northeast coastal dunes in Tunisia according to distance from the shoreline and dieback intensity. Dendrochronologia, 2017, 45, 62-72.	2.2	20
25	Metabolite profiling and potential antioxidant activity of sixteen fennel (Foeniculum vulgare Mill.) populations growing wild in Tunisia. South African Journal of Botany, 2022, 148, 407-414.	2.5	20
26	Evaluation of <i>Pistacia lentiscus</i> seed oil and phenolic compounds for <i>in vitro</i> antiproliferative effects against BHK21 cells. Pharmaceutical Biology, 2016, 54, 747-751.	2.9	18
27	Effects of Rhus tripartitum fruit extract on CCl4-induced hepatotoxicity and cisplatin-induced nephrotoxicity in rats. Canadian Journal of Physiology and Pharmacology, 2016, 94, 801-807.	1.4	17
28	Chemical composition and antioxidant activity of the volatile fraction extracted from airâ€dried fruits of Tunisian <i>Eryngium maritimum</i> L. ecotypes. Journal of the Science of Food and Agriculture, 2018, 98, 635-643.	3.5	16
29	Fatty acids and triacylglycerols composition from Tunisian Acacia species seed oil. Arabian Journal of Chemistry, 2019, 12, 3302-3308.	4.9	15
30	Lipid characterization of Eryngium maritimum seeds grown in Tunisia. Industrial Crops and Products, 2017, 105, 47-52.	5.2	14
31	Phenolic profile and effect of growing area on Pistacia lentiscus seed oil. Food Chemistry, 2018, 257, 206-210.	8.2	14
32	Transcriptome profiling the basal region of poplar stems during the early gravitropic response. Biologia Plantarum, 2014, 58, 55-63.	1.9	13
33	High tocopherol and triacylglycerol contents in <i>Pinuspinea</i> L. seeds. International Journal of Food Sciences and Nutrition, 2009, 60, 161-169.	2.8	12
34	Intraspecific Variation of Capparis spinosa L. in Tunisia. Journal of Herbs, Spices and Medicinal Plants, 2009, 15, 9-15.	1.1	12
35	Minor lipid components of some Acacia species: potential dietary health benefits of the unexploited seeds. Lipids in Health and Disease, 2012, 11, 49.	3.0	12
36	Unexploited Acacia cyanophylla seeds: potential food sources of ï‰6 fatty acids and antioxidants?. Journal of the Science of Food and Agriculture, 2012, 92, 1526-1532.	3.5	12

Abdelhamid Khaldi

#	Article	IF	CITATIONS
37	Volatile Constituents of Pinus pinea L. Needles. Journal of Essential Oil Research, 2011, 23, 15-19.	2.7	11

Tree-rings to climate relationships in nineteen provenances of four black pines sub-species (Pinus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

39	Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia. Forest Systems, 2016, 25, e060.	0.3	11
40	Essential Oils of Daucus carota subsp. carota of Tunisia Obtained by Supercritical Carbon Dioxide Extraction. Natural Product Communications, 2010, 5, 1934578X1000501.	0.5	9
41	Chemical Polymorphism of Essential Oils from Populations of <i>Laurus nobilis</i> Grown on Tunisia, Algeria and France. Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	9
42	Salinity tolerance of hydroponically grown Pinus pinea L. seedlings. Acta Physiologiae Plantarum, 2011, 33, 765-775.	2.1	9
43	Contents of Carotenoids, Tocopherols and Sterols in <i>Acacia cyanophylla</i> Seed Oils. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 429-436.	1.9	9
44	Triacylglycerols and Phospholipids Composition of Caper Seeds (Capparis spinosa). JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1787-1793.	1.9	8
45	Diversity of Sterol Composition in Tunisian <i>Pistacia lentiscus</i> Seed Oil. Chemistry and Biodiversity, 2016, 13, 544-548.	2.1	8
46	Assessment of land-cover change using GIS and remotely-sensed data: A case study in Ain Snoussi area of northern Tunisia. Forest Science and Technology, 2011, 7, 75-81.	0.8	7
47	Chemical composition and biological activities essential oil from the needles African of Pinus pinaster Var Revue Roumaine De Chimie, 2019, 64, 511-518.	0.2	7
48	Adjustment of photosynthetic carbon assimilation to higher growth irradiance in three-year-old seedlings of two Tunisian provenances of Cork Oak (Quercus suber L.). IForest, 2017, 10, 618-624.	1.4	7
49	Variation of Essential Oil Composition, Antioxidant and Anticholinesterase Activities between <i>Pinus halepensis</i> Mill. Plant Organs. Journal of Essential Oil-bearing Plants: JEOP, 2020, 23, 1450-1462.	1.9	6
50	Breeding Improvement ofLaurus nobilisL. by Conventional andIn VitroPropagation Techniques. Journal of Herbs, Spices and Medicinal Plants, 2002, 9, 101-105.	1.1	5
51	Population Genetic Structure of Laurus nobilis L. Inferred From Transferred Nuclear Microsatellites. Silvae Genetica, 2009, 58, 270-276.	0.8	5
52	IMPACTS OF LOCATION AND FORESTRY CONDITIONS ON SOME PHYSICAL AND MECHANICAL PROPERTIES OF NORTHERN TUNISIAN PINUS PINEA L. WOOD Bois Et Forets Des Tropiques, 2015, 324, 65.	0.2	5
53	Fatty Acid Composition, Essential Oil and Antibacterial Activity of Berries ofLaurus nobilisL Journal of Essential Oil-bearing Plants: JEOP, 2009, 12, 422-434.	1.9	3
54	Evolution of growth-climate relationships of three pine species in Kroumirie (North-West Tunisia). Sécheresse, 2013, 24, 138-146.	0.1	3

#	Article	IF	CITATIONS
55	Unexploited <i>Thapsia garganica</i> , <i>Orlaya maritima</i> , and <i>Retama raetam</i> Seeds: Potential Sources of Unsaturated Fatty Acid and Natural Antioxidants. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1175-1181.	1.9	3
56	Relationship between climate and growth of two North African varieties of <i>Pinus pinaster </i> Arn African Journal of Ecology, 2019, 57, 327-334.	0.9	3
57	Morphological and Chemical Differentiation between Tunisian Populations of <i>Pinus halepensis</i> , <i>Pinus brutia</i> , and <i>Pinus pinaster</i> . Chemistry and Biodiversity, 2021, 18, e2100071.	2.1	3
58	Tree growth and leaf gas exchange variability of three Mediterranean Pinus spp. growing in a common garden in Northeastern Tunisia. Euro-Mediterranean Journal for Environmental Integration, 2020, 5, 1.	1.3	2
59	Towards optimizing acorn use as animal feed in Tunisia: evaluation and impact on natural regeneration. Bois Et Forets Des Tropiques, 0, 348, 17-26.	0.2	2
60	Effect of Growing Area on Total Polyphenols, Flavonoids, Tannins and Antimicrobial Activity in Quercus suber L. Acorn Oil. Journal of Food Chemistry and Nanotechnology, 2021, 7, 30-33.	0.3	1
61	Chemotaxonomic Study of Four Subspecies of Pinus nigra Arn. Grown in Common Garden Based on Essential Oil Composition. Journal of Food Quality, 2021, 2021, 1-7.	2.6	1
62	Carbon stocks distribution in shrub species of a North African cork oak forest. African Journal of Ecology, 2017, 55, 693-696.	0.9	0
63	Mineral Composition of Bluish-Black and Yellowish- White Myrtus communis L. Berries and Arbutus unedo L. Fruits. Journal of Food Chemistry and Nanotechnology, 2021, 7, 1-3.	0.3	0