
Mark Hurst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/395586/publications.pdf Version: 2024-02-01

MADE HUDST

17

#	Article	IF	CITATIONS
1	The effect of selected bacteria on the virulence of <i>Metarhizium novozealandicum</i> C14 to <i>Costelytra giveni</i> larvae (Scarabaeidae). Biocontrol Science and Technology, 2022, 32, 30-46.	1.3	0
2	Identification of genes involved in exoprotein release using a high-throughput exoproteome screening assay in Yersinia entomophaga. PLoS ONE, 2022, 17, e0263019.	2.5	7
3	Using multiple insecticidal microbial agents against diamondback moth larvae - does it increase toxicity?. New Zealand Journal of Agricultural Research, 2021, 64, 178-193.	1.6	5
4	Evolution of virulence in a novel family of transmissible megaâ€plasmids. Environmental Microbiology, 2021, 23, 5289-5304.	3.8	5
5	Characterization of a new strain of <i>Metarhizium novozealandicum</i> with potential to be developed as a biopesticide. Mycology, 2021, 12, 261-278.	4.4	11
6	Investigating the Process of Sheath Maturation in Antifeeding Prophage: a Phage Tail-Like Protein Translocation Structure. Journal of Bacteriology, 2021, 203, e0010421.	2.2	3
7	Identification of Diverse Toxin Complex Clusters and an eCIS Variant in Serratia proteamaculans Pathovars of the New Zealand Grass Grub (<i>Costelytra Giveni</i>) and Manuka Beetle () Tj ETQq1 1 0.784314	1 rgBT /Ove	erlock 10 Tfl
8	<i>In vivo</i> transcriptome analysis provides insights into host-dependent expression of virulence factors by <i>Yersinia entomophaga</i> MH96, during infection of <i>Galleria mellonella</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	6
9	Development of a Yersinia entomophaga bait for control of larvae of the porina moth (Wiseana spp.), a pest of New Zealand improved grassland systems. Pest Management Science, 2020, 76, 350-359.	3.4	5
10	Biocontrol of sheep blowfly: is there a role for pathogen-based biopesticides?. Biocontrol Science and Technology, 2020, 30, 51-67.	1.3	3
11	Assessment of toxicity and persistence of <scp> <i>Yersinia entomophaga</i> </scp> and its <scp>Yenâ€Tc</scp> associated toxin. Pest Management Science, 2020, 76, 4301-4310.	3.4	2
12	Potential for a biopesticide bait to control black beetle, <i>Heteronychus arator</i> (Coleoptera:) Tj ETQq0 0 0 rg	gBT /Overla	oc <u>k</u> 10 Tf 50
13	Atomic structures of an entire contractile injection system in both the extended and contracted states. Nature Microbiology, 2019, 4, 1885-1894.	13.3	45
14	Cryo-EM structures of the pore-forming A subunit from the Yersinia entomophaga ABC toxin. Nature Communications, 2019, 10, 1952.	12.8	40
15	Assessment of Yersinia entomophaga as a control agent of the diamondback moth Plutella xylostella. Journal of Invertebrate Pathology, 2019, 162, 19-25.	3.2	7
16	Use of a gnotobiotic plant assay for assessing root colonization and mineral phosphate solubilization by Paraburkholderia bryophila Ha185 in association with perennial ryegrass (Lolium) Tj ETQq0 0 0 r	gB I. 7Overl	ock610 Tf 50
17	Serratia proteamaculans Strain AGR96X Encodes an Antifeeding Prophage (Tailocin) with Activity against Grass Grub (Costelytra giveni) and Manuka Beetle (Pyronota Species) Larvae. Applied and Environmental Microbiology, 2018, 84, .	3.1	27

Mark Hurst

#	Article	IF	CITATIONS
19	Structure and gene cluster of a tyvelose-containing O-polysaccharide of an entomopathogenic bacterium Yersinia entomophaga MH96 T related to Yersinia pseudotuberculosis. Carbohydrate Research, 2017, 445, 93-97.	2.3	0
20	Novel bacterial seed treatment protects wheat seedlings from insect damage. Crop and Pasture Science, 2017, 68, 527.	1.5	2
21	The Draft Genome Sequence of the Yersinia entomophaga Entomopathogenic Type Strain MH96T. Toxins, 2016, 8, 143.	3.4	17
22	Dispersal of the Invasive Pasture Pest Heteronychus arator into Areas of Low Population Density: Effects of Sex and Season, and Implications for Pest Management. Frontiers in Plant Science, 2016, 7, 1278.	3.6	7
23	Purification of the Yersinia entomophaga Yen-TC Toxin Complex Using Size Exclusion Chromatography. Methods in Molecular Biology, 2016, 1477, 39-48.	0.9	5
24	Non-spore-Forming Bacterial Entomopathogens: Their Toxins, Hosts and the Environment: Why Be a Pathogen. Advances in Environmental Microbiology, 2016, , 169-220.	0.3	2
25	<scp><i>hemX</i></scp> is required for production of 2â€ketogluconate, the predominant organic anion required for inorganic phosphate solubilization by <scp><i>B</i></scp> <i>urkholderia</i> sp. <scp>H</scp> a185. Environmental Microbiology Reports, 2015, 7, 918-928.	2.4	7
26	<scp>A</scp> fp14 is involved in regulating the length of Antiâ€feeding prophage (<scp>A</scp> fp). Molecular Microbiology, 2015, 96, 815-826.	2.5	13
27	The role of gluconate production by <i>Pseudomonas</i> spp. in the mineralization and bioavailability of calcium–phytate to <i>Nicotiana tabacum</i> . Canadian Journal of Microbiology, 2015, 61, 885-897.	1.7	10
28	Temperature-Dependent Galleria mellonella Mortality as a Result of Yersinia entomophaga Infection. Applied and Environmental Microbiology, 2015, 81, 6404-6414.	3.1	22
29	Plant assimilation of phosphorus from an insoluble organic form is improved by addition of an organic anion producing Pseudomonas sp Soil Biology and Biochemistry, 2014, 68, 263-269.	8.8	48
30	Pathology of Yersinia entomophaga MH96 towards Costelytra zealandica (Coleoptera; Scarabaeidae) larvae. Journal of Invertebrate Pathology, 2014, 115, 102-107.	3.2	22
31	The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device. Nature, 2013, 501, 547-550.	27.8	144
32	<i>Serratia entomophilabet</i> gene induction and the impact of glycine betaine accumulation on desiccation tolerance. Journal of Applied Microbiology, 2013, 114, 470-481.	3.1	7
33	Role of antifeeding prophage (<scp>Afp</scp>) protein <scp>Afp</scp> 16 in terminating the length of the <scp>Afp</scp> tailocin and stabilizing its sheath. Molecular Microbiology, 2013, 89, 702-714.	2.5	30
34	Three-dimensional Structure of the Toxin-delivery Particle Antifeeding Prophage of Serratia entomophila. Journal of Biological Chemistry, 2013, 288, 25276-25284.	3.4	57
35	Histopathological Effects of the Yen-Tc Toxin Complex from Yersinia entomophaga MH96 (Enterobacteriaceae) on the Costelytra zealandica (Coleoptera: Scarabaeidae) Larval Midgut. Applied and Environmental Microbiology, 2012, 78, 4835-4847.	3.1	27
36	Structural Analysis of Chi1 Chitinase from Yen-Tc: The Multisubunit Insecticidal ABC Toxin Complex of Yersinia entomophaga. Journal of Molecular Biology, 2012, 415, 359-371.	4.2	61

Mark Hurst

#	Article	IF	CITATIONS
37	Quantum dot nanoparticles affect the reproductive system of <i>Caenorhabditis elegans</i> . Environmental Toxicology and Chemistry, 2012, 31, 2366-2374.	4.3	42
38	Nucleotide sequence of the Serratia entomophila plasmid pADAP and the Serratia proteamaculans pU143 plasmid virulence associated region. Plasmid, 2011, 65, 32-41.	1.4	26
39	3D structure of the <i>Yersinia entomophaga</i> toxin complex and implications for insecticidal activity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20544-20549.	7.1	91
40	The Main Virulence Determinant of Yersinia entomophaga MH96 Is a Broad-Host-Range Toxin Complex Active against Insects. Journal of Bacteriology, 2011, 193, 1966-1980.	2.2	76
41	Yersinia entomophaga sp. nov., isolated from the New Zealand grass grub Costelytra zealandica. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 844-849.	1.7	97
42	Structural Study of the <i>Serratia entomophila</i> Antifeeding Prophage: Three-Dimensional Structure of the Helical Sheath. Journal of Bacteriology, 2010, 192, 4522-4525.	2.2	8
43	Phenotypic changes and the fate of digestive enzymes during induction of amber disease in larvae of the New Zealand grass grub (Costelytra zealandica). Journal of Invertebrate Pathology, 2009, 101, 215-221.	3.2	7
44	Serine proteases identified from a Costelytra zealandica (White) (Coleoptera: Scarabaeidae) midgut EST library and their expression through insect development. Insect Molecular Biology, 2008, 17, 247-259.	2.0	17
45	Isolation and characterization of theSerratia entomophilaantifeeding prophage. FEMS Microbiology Letters, 2007, 270, 42-48.	1.8	76
46	Induced expression of the <i>Serratia entomophila</i> Sep proteins shows activity towards the larvae of the New Zealand grass grub <i>Costelytra zealandica</i> . FEMS Microbiology Letters, 2007, 275, 160-167.	1.8	32
47	Utilization of the Rhs core region of tc-sepC orthologues as a degenerate system for the rapid amplification of insecticidal genes. Molecular Ecology Notes, 2006, 6, 616-620.	1.7	1
48	Virulence of Serratia Strains against Costelytra zealandica. Applied and Environmental Microbiology, 2006, 72, 6417-6418.	3.1	25
49	Occurrence of sep Insecticidal Toxin Complex Genes in Serratia spp. and Yersinia frederiksenii. Applied and Environmental Microbiology, 2006, 72, 6584-6592.	3.1	34
50	Cloning Serratia entomophila Antifeeding Genes—a Putative Defective Prophage Active against the Grass Grub Costelytra zealandica. Journal of Bacteriology, 2004, 186, 5116-5128.	2.2	129
51	Peripheral sequences of the Serratia entomophila pADAP virulence-associated region. Plasmid, 2003, 50, 213-229.	1.4	14
52	Use of the green fluorescent protein to monitor the fate of Serratia entomophila causing amber disease in the New Zealand grass grub, Costelytra zealandica. Journal of Microbiological Methods, 2002, 50, 1-8.	1.6	23
53	Restriction Map of the Serratia entomophila Plasmid pADAP Carrying Virulence Factors for Costelytra zealandica. Plasmid, 2002, 47, 51-60.	1.4	9
54	Plasmid-Located Pathogenicity Determinants of Serratia entomophila, the Causal Agent of Amber Disease of Grass Grub, Show Similarity to the Insecticidal Toxins of Photorhabdus luminescens. Journal of Bacteriology, 2000, 182, 5127-5138.	2.2	150

#	Article	IF	CITATIONS
55	Plasmid transfer among several members of the family Enterobacteriaceae increases the number of species capable of causing experimental amber disease in grass grub. FEMS Microbiology Letters, 1996, 139, 117-120.	1.8	12