Min Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/395580/publications.pdf

Version: 2024-02-01

1040056 1058476 29 243 9 14 citations h-index g-index papers 29 29 29 224 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Systematical study on photodissociation dynamics of BrCN from 225â€nm to 260â€nm. Chinese Journal of Chemical Physics, 2022, 35, 86-94.	1.3	5
2	Photodissociation branching ratios for several absorption bands of ¹² C ¹⁶ O from 108,500 to 109,220 cm ^{â°'1} . Molecular Physics, 2021, 119, e1718228.	1.7	5
3	Multifunctional ionic liquid-assisted interfacial engineering towards ZnS nanodots with ultrastable high-rate lithium storage performance. Dalton Transactions, 2021, 50, 16519-16527.	3.3	5
4	Mode-Specific Autodetachment Dynamics of an Excited Non-valence Quadrupole-Bound State. Journal of Physical Chemistry Letters, 2021, 12, 1947-1954.	4.6	12
5	A three-dimensional velocity-map imaging setup designed for crossed ion-molecule scattering studies. Chinese Journal of Chemical Physics, 2021, 34, 71-80.	1.3	7
6	Photodissociation branching ratios of ^{12 < /sup>C ^{16 < /sup>O from 110 500 to 113 045 cm ^{â^1 < /sup>: first observation of the C(^{1 < /sup>S) channel. Astronomy and Astrophysics, 2021, 647, A127.}}}}	5.1	1
7	Rapid and Selective Uptake of Cs ⁺ and Sr ²⁺ lons by a Layered Thiostannate with Acid–Base and Irradiation Resistances. ACS ES&T Water, 2021, 1, 2440-2449.	4.6	12
8	A photoionized pulsed low-energy ion beam source for quantum state-to-state crossed ion-molecule scattering. Review of Scientific Instruments, 2021, 92, 113302.	1.3	3
9	Vacuum ultraviolet photoexcitation and photofragment spectroscopic studies of 14N15N between 109000 and 117500Âcmâ°'1. Journal of Chemical Physics, 2021, 155, 234305.	3.0	10
10	Strong Isotope-dependent Photodissociation Branching Ratios of N $<$ sub $>2<$ /sub $>$ and Their Potential Implications for the $<$ sup $>14<$ /sup $>N$ / $<$ sup $>15<$ /sup $>N$ Isotope Fractionation in Titan's Atmosphere. Astrophysical Journal, 2021, 923, 196.	4.5	12
11	Reinvestigation of the Rydberg W1 \hat{l}\hat{l}\hat{l}/2 = 1) level of 12C16O, 13C16O, and 12C18O through rotationally dependent photodissociation branching ratio measurements. Journal of Chemical Physics, 2020, 152, 234308.	3.0	2
12	Photodissociation branching ratios of $\langle sup \rangle 13 \langle sup \rangle C \langle sup \rangle 16 \langle sup \rangle O$ and $\langle sup \rangle 12 \langle sup \rangle C \langle sup \rangle 18 \langle sup \rangle O$ in the vacuum ultraviolet region from 107 800 to 109 700 cm $\langle sup \rangle 2^3 (1 \langle sup \rangle)$. Astronomy and Astrophysics, 2020, 637, A37.	5.1	5
13	Channel-resolved rotationally dependent predissociation rate constants reveal the state-to-state dissociation dynamics of carbon monoxide in electronically excited states. Physical Chemistry Chemical Physics, 2020, 22, 2549-2556.	2.8	6
14	Photodissociation Branching Ratios of ¹³ C ¹⁶ O in the Vacuum Ultraviolet Region from 102,745 to 106,360 cm ^{â^1} . Astrophysical Journal, 2020, 891, 16.	4.5	6
15	Vacuum Ultraviolet Photodissociation Branching Ratios of ¹² C ¹⁶ O, ¹³ C ¹⁶ O, and ¹² C ¹⁸ O from 100500 to 102320 cm ^{–1} . Journal of Physical Chemistry A, 2020, 124, 9382-9391.	2.5	3
16	Strong and selective isotope effect in the vacuum ultraviolet photodissociation branching ratios of carbon monoxide. Nature Communications, 2019, 10, 3175.	12.8	23
17	Rotational dependence of the branching ratios and fragment angular distributions for the photodissociation of ¹² C ¹⁶ O in the Rydberg 4p(2) and 5p(0) complex region (92.84–93.37 nm). Physical Chemistry Chemical Physics, 2019, 21, 14376-14386.	2.8	12
18	A mini-photofragment translational spectrometer with ion velocity map imaging using low voltage acceleration. Review of Scientific Instruments, 2018, 89, 013101.	1.3	17

#	Article	IF	Citations
19	lonization spectroscopies and theoretical calculations of cis and trans 3-fluoro- N -methylaniline-Ar n ($n=1,2$) van der Waals clusters: Structures and binding energies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 183, 177-186.	3.9	2
20	Resolved (v ₁ , v ₂ = 1) Combination Vibrational States of CF ₃ Fragments in the Photofragment Translational Spectra of CF ₃ I. Journal of Physical Chemistry A, 2016, 120, 9682-9689.	2.5	2
21	Photodissociation dynamics of ICH ₂ Cl â†' CH ₂ Cl + I*/I: photofragment translational spectroscopy at 304 and 277 nm. Physical Chemistry Chemical Physics, 2016, 18, 3165-3172.	2.8	8
22	Vibrational Spectra and Theoretical Calculations of <i>cis</i> - and <i>trans</i> -3-Fluoro- <i>N</i> -methylaniline in the Neutral (S ₀) and Cationic (D ₀) Ground States. Journal of Physical Chemistry A, 2016, 120, 81-94.	2.5	9
23	Photofragment translational spectroscopy at 304 nm from C-H symmetric stretch excited CH3I [v 1 = 1]. Science China Chemistry, 2014, 57, 902-910.	8.2	0
24	Vibrationally Mediated Photodissociation of CH $<$ sub $>$ 3 $<$ /sub $>$ 1 [$<$ i $>>$ 0 $<$ /i>> $<$ sub $>$ 1 $<$ /sub $>$ = 1] at 277.5 nm: The Vibrationally Adiabatic Process. Journal of Physical Chemistry A, 2013, 117, 4352-4357.	2.5	6
25	Photofragment translational spectroscopy of CH3I at 225 nmâ€"with the high excitation of the symmetric stretch vibration of CH3 fragment. Journal of Chemical Physics, 2012, 137, 144302.	3.0	9
26	Photofragment translational spectroscopy of ICl near 304 and 280 nm: Observation of an intense hot band effect. Science China Chemistry, 2012, 55, 1148-1154.	8.2	2
27	Vibrationally Resolved Photofragment Translational Spectroscopy of CH ₃ I from 277 to 304 nm with Increasing Effect of the Hot Band. Journal of Physical Chemistry A, 2011, 115, 1153-1160.	2.5	16
28	Communication: Probing the entrance channels of the X + CH4 → HX + CH3 (X = F, Cl, Br, I) reactions via photodetachment of XⰒ–CH4. Journal of Chemical Physics, 2011, 134, 191102.	3.0	35
29	Vibrational state distributions following the photodissociation of CF3I near 304nm. Chemical Physics Letters, 2010, 488, 158-161.	2.6	8