Dieter Mesotten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3955689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research priorities in pediatric parenteral nutrition: a consensus and perspective from ESPGHAN/ESPEN/ESPR/CSPEN. Pediatric Research, 2022, 92, 61-70.	1.1	10
2	Interaction between stroke severity and quality indicators of acute stroke care: a single-center retrospective analysis. Acta Neurologica Belgica, 2022, 122, 173-180.	0.5	4
3	Will Smartphone Applications Replace the Insertable Cardiac Monitor in the Detection of Atrial Fibrillation? The First Comparison in a Case Report of a Cryptogenic Stroke Patient. Frontiers in Cardiovascular Medicine, 2022, 9, 839853.	1.1	2
4	The Potential and Limitations of Mobile Health and Insertable Cardiac Monitors in the Detection of Atrial Fibrillation in Cryptogenic Stroke Patients: Preliminary Results From the REMOTE Trial. Frontiers in Cardiovascular Medicine, 2022, 9, 848914.	1.1	2
5	Long-Term Outcome in Patients With Spinal Cord Stimulation for Failed Back Surgery Syndrome: A 20-Year Audit of a Single Center. Neuromodulation, 2022, , .	0.4	2
6	Hospital-acquired infections after acute ischaemic stroke and its association with healthcare-related costs and functional outcome. Acta Neurologica Belgica, 2022, 122, 1281-1287.	0.5	2
7	Salvage Lobectomy to Treat Necrotizing SARS-CoV-2 Pneumonia Complicated by a Bronchopleural Fistula. Annals of Thoracic Surgery, 2021, 111, e241-e243.	0.7	6
8	Vital Signs Prediction for COVID-19 Patients in ICU. Sensors, 2021, 21, 8131.	2.1	5
9	Association between postoperative delirium and postoperative cerebral oxygen desaturation in older patients after cardiac surgery. British Journal of Anaesthesia, 2020, 124, 146-153.	1.5	47
10	Prediction of Functional Outcome After Acute Ischemic Stroke: Comparison of the CT-DRAGON Score and a Reduced Features Set. Frontiers in Neurology, 2020, 11, 718.	1.1	5
11	Clinical research and trial registries: the times they are a-changin. Regional Anesthesia and Pain Medicine, 2020, 45, 844.2-846.	1.1	1
12	Venous thromboembolism in SARS-CoV-2 patients: only a problem in ventilated ICU patients, or is there more to it?. European Respiratory Journal, 2020, 56, 2001201.	3.1	50
13	Accuracy of Blood Glucose Measurement and Blood Glucose Targets. Journal of Diabetes Science and Technology, 2020, 14, 553-559.	1.3	22
14	The Prognostic Value of Simplified EEG in Out-of-Hospital Cardiac Arrest Patients. Neurocritical Care, 2019, 30, 139-148.	1.2	12
15	Feature Engineering for ICU Mortality Prediction Based on Hourly to Bi-Hourly Measurements. Applied Sciences (Switzerland), 2019, 9, 3525.	1.3	11
16	Hepatic PPARα is critical in the metabolic adaptation to sepsis. Journal of Hepatology, 2019, 70, 963-973.	1.8	53
17	Effect of Bupivacaine Liposome Injectable Suspension on Sensory Blockade and Analgesia for Dupuytren Contracture Release. Journal of Hand Surgery Global Online, 2019, 1, 191-197.	0.3	4
18	Cerebral saturation in cardiac arrest patients measured with near-infrared technology during pre-hospital advanced life support. Results from Copernicus I cohort study. Resuscitation, 2018, 129, 107-113.	1.3	35

#	Article	IF	CITATIONS
19	The validation of simplified EEG derived from the bispectral index monitor in post-cardiac arrest patients. Resuscitation, 2018, 126, 179-184.	1.3	15
20	The prognostic value of bispectral index and suppression ratio monitoring after out-of-hospital cardiac arrest: a prospective observational study. Annals of Intensive Care, 2018, 8, 34.	2.2	13
21	A prediction model for good neurological outcome in successfully resuscitated out-of-hospital cardiac arrest patients. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2018, 26, 93.	1.1	12
22	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Energy. Clinical Nutrition, 2018, 37, 2309-2314.	2.3	135
23	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids. Clinical Nutrition, 2018, 37, 2315-2323.	2.3	148
24	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Lipids. Clinical Nutrition, 2018, 37, 2324-2336.	2.3	163
25	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Carbohydrates. Clinical Nutrition, 2018, 37, 2337-2343.	2.3	85
26	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Fluid and electrolytes. Clinical Nutrition, 2018, 37, 2344-2353.	2.3	85
27	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Calcium, phosphorus and magnesium. Clinical Nutrition, 2018, 37, 2360-2365.	2.3	101
28	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Venous access. Clinical Nutrition, 2018, 37, 2379-2391.	2.3	73
29	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Organisational aspects. Clinical Nutrition, 2018, 37, 2392-2400.	2.3	46
30	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Home parenteral nutrition. Clinical Nutrition, 2018, 37, 2401-2408.	2.3	54
31	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Standard versus individualized parenteral nutrition. Clinical Nutrition, 2018, 37, 2409-2417.	2.3	56
32	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Iron and trace minerals. Clinical Nutrition, 2018, 37, 2354-2359.	2.3	89
33	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Guideline development process for the updated guidelines. Clinical Nutrition, 2018, 37, 2306-2308.	2.3	32
34	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Vitamins. Clinical Nutrition, 2018, 37, 2366-2378.	2.3	82
35	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Complications. Clinical Nutrition, 2018, 37, 2418-2429.	2.3	73
36	Plasma N-glycome composition associates with chronic low back pain. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2124-2133.	1.1	18

#	Article	IF	CITATIONS
37	Cost-effectiveness study of early versus late parenteral nutrition in critically ill children (PEPaNIC): preplanned secondary analysis of a multicentre randomised controlled trial. Critical Care, 2018, 22, 4.	2.5	22
38	ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition. Clinical Nutrition, 2018, 37, 2303-2305.	2.3	96
39	Evidence for the use of parenteral nutrition in the pediatric intensive care unit. Clinical Nutrition, 2017, 36, 218-223.	2.3	16
40	Addition of Liposome Bupivacaine to Bupivacaine HCl Versus Bupivacaine HCl Alone for Interscalene Brachial Plexus Block in Patients Having Major Shoulder Surgery. Regional Anesthesia and Pain Medicine, 2017, 42, 334-341.	1.1	91
41	Software-guided versus nurse-directed blood glucose control in critically ill patients: the LOGIC-2 multicenter randomized controlled clinical trial. Critical Care, 2017, 21, 212.	2.5	50
42	Worldwide Survey of Nutritional Practices in PICUs*. Pediatric Critical Care Medicine, 2016, 17, 10-18.	0.2	54
43	Neurocognitive Development After Pediatric Heart Surgery. Pediatrics, 2016, 137, .	1.0	24
44	Early versus Late Parenteral Nutrition in Critically Ill Children. New England Journal of Medicine, 2016, 374, 1111-1122.	13.9	402
45	Sweet Spot: Glucose Control in the Intensive Care Unit. Seminars in Respiratory and Critical Care Medicine, 2016, 37, 057-067.	0.8	10
46	Cholestatic liver (dys)function during sepsis and other critical illnesses. Intensive Care Medicine, 2016, 42, 16-27.	3.9	98
47	Performance of strip-based glucose meters and cassette-based blood gas analyzer for monitoring glucose levels in a surgical intensive care setting. Clinical Chemistry and Laboratory Medicine, 2016, 54, 169-80.	1.4	8
48	An Analysis of Reliability and Accuracy of Muscle Thickness Ultrasonography in Critically Ill Children and Adults. Journal of Parenteral and Enteral Nutrition, 2016, 40, 944-949.	1.3	41
49	In Reply. Clinical Chemistry, 2015, 61, 666-667.	1.5	Ο
50	Glucose management in critically ill adults and children. Lancet Diabetes and Endocrinology,the, 2015, 3, 723-733.	5.5	53
51	Impact of withholding early parenteral nutrition completing enteral nutrition in pediatric critically ill patients (PEPaNIC trial): study protocol for a randomized controlled trial. Trials, 2015, 16, 202.	0.7	56
52	Neurocognition after paediatric heart surgery: a systematic review and meta-analysis. Open Heart, 2015, 2, e000255.	0.9	25
53	Tight glycaemic control in critically ill children. Nature Reviews Endocrinology, 2014, 10, 196-197.	4.3	6
54	Modeling of Effect of Glucose Sensor Errors on Insulin Dosage and Glucose Bolus Computed by LOGIC-Insulin. Clinical Chemistry, 2014, 60, 1510-1518.	1.5	22

#	Article	IF	CITATIONS
55	Amino Acid Concentrations in Critically III Children Following Cardiac Surgery*. Pediatric Critical Care Medicine, 2014, 15, 314-328.	0.2	12
56	Impact of Parenteral Nutrition Versus Fasting on Hepatic Bile Acid Production and Transport in a Rabbit Model of Prolonged Critical Illness. Shock, 2014, 41, 48-54.	1.0	16
57	Withholding parenteral nutrition during critical illness increases plasma bilirubin but lowers the incidence of biliary sludge. Hepatology, 2014, 60, 202-210.	3.6	28
58	Continuous glucose control in the ICU: report of a 2013 round table meeting. Critical Care, 2014, 18, 226.	2.5	68
59	Acute Outcomes and 1-Year Mortality of Intensive Care Unit–acquired Weakness. A Cohort Study and Propensity-matched Analysis. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 410-420.	2.5	390
60	The authors reply. Pediatric Critical Care Medicine, 2014, 15, 793-794.	0.2	0
61	Clinical review: Consensus recommendations on measurement of blood glucose and reporting glycemic control in critically ill adults. Critical Care, 2013, 17, 229.	2.5	169
62	Continuous glucose sensors for glycaemic control in the ICU: have we arrived?. Critical Care, 2013, 17, 1004.	2.5	6
63	Role of Disease and Macronutrient Dose in the Randomized Controlled EPaNIC Trial. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 247-255.	2.5	238
64	Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Respiratory Medicine,the, 2013, 1, 621-629.	5.2	255
65	Impact of Early Parenteral Nutrition on Muscle and Adipose Tissue Compartments During Critical Illness*. Critical Care Medicine, 2013, 41, 2298-2309.	0.4	123
66	LOGIC-Insulin Algorithm–Guided Versus Nurse-Directed Blood Glucose Control During Critical Illness. Diabetes Care, 2013, 36, 188-194.	4.3	81
67	Neurocognitive Development of Children 4 Years After Critical Illness and Treatment With Tight Glucose Control. Survey of Anesthesiology, 2013, 57, 137.	0.1	1
68	Effect of Tight Glucose Control with Insulin on the Thyroid Axis of Critically Ill Children and Its Relation with Outcome. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 3569-3576.	1.8	24
69	Glycemic Control in the Pediatric Intensive Care Unit of Leuven: Two Years of Experience. Journal of Diabetes Science and Technology, 2012, 6, 15-21.	1.3	8
70	Blood Glucose Measurements in Critically III Patients. Journal of Diabetes Science and Technology, 2012, 6, 22-28.	1.3	11
71	Early versus late parenteral nutrition in ICU patients: cost analysis of the EPaNIC trial. Critical Care, 2012, 16, R96.	2.5	56
72	Neurocognitive Development of Children 4 Years After Critical Illness and Treatment With Tight Glucose Control. JAMA - Journal of the American Medical Association, 2012, 308, 1641.	3.8	133

5

#	Article	IF	CITATIONS
73	Glycemic Targets and Approaches to Management of the Patient with Critical Illness. Current Diabetes Reports, 2012, 12, 101-107.	1.7	43
74	Enteral nutrition: better navigation, yet unknown destination?. Critical Care, 2011, 15, 1015.	2.5	2
75	Critical illness evokes elevated circulating bile acids related to altered hepatic transporter and nuclear receptor expression. Hepatology, 2011, 54, 1741-1752.	3.6	86
76	Effect of Intensive Insulin Therapy on the Somatotropic Axis of Critically III Children. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 2558-2566.	1.8	19
77	Assessment of Blood Glucose Control in the Pediatric Intensive Care Unit: Extension of the Glycemic Penalty Index toward Children and Infants. Journal of Diabetes Science and Technology, 2011, 5, 353-357.	1.3	3
78	Early versus Late Parenteral Nutrition in Critically III Adults. New England Journal of Medicine, 2011, 365, 506-517.	13.9	2,410
79	MOLECULAR ANALYSIS OF SEPSIS-INDUCED CHANGES IN THE LIVER. Shock, 2010, 34, 427-436.	1.0	11
80	The Impact of Resuscitated Fecal Peritonitis on the Expression of the Hepatic Bile Salt Transporters in a Porcine Model. Shock, 2010, 34, 508-516.	1.0	8
81	Tight Glycemic Control Protects the Myocardium and Reduces Inflammation in Neonatal Heart Surgery. Annals of Thoracic Surgery, 2010, 90, 22-29.	0.7	53
82	Glucose Dysregulation and Neurological Injury Biomarkers in Critically Ill Children. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 4669-4679.	1.8	30
83	Intensive Insulin Therapy in Critically III Patients: NICE-SUGAR or Leuven Blood Glucose Target?. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 3163-3170.	1.8	236
84	Intensive insulin therapy in the intensive care unit. Cmaj, 2009, 180, 799-800.	0.9	43
85	The Effect of Strict Blood Glucose Control on Biliary Sludge and Cholestasis in Critically III Patients. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2345-2352.	1.8	53
86	Clinical benefits of tight glycaemic control: focus on the intensive care unit. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2009, 23, 421-429.	1.7	27
87	Glucose Control in Critically III Patients. New England Journal of Medicine, 2009, 361, 89-92.	13.9	29
88	Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. Lancet, The, 2009, 373, 547-556.	6.3	1,572
89	Bench-to-bedside review: Metabolism and nutrition. Critical Care, 2008, 12, 222.	2.5	46
90	Tight glycaemic control in the intensive care unit: pitfalls in the testing of the concept. Critical Care, 2008, 12, 187.	2.5	4

#	Article	IF	CITATIONS
91	The altered adrenal axis and treatment with glucocorticoids during critical illness. Nature Clinical Practice Endocrinology and Metabolism, 2008, 4, 496-505.	2.9	73
92	Changes Within the GH/IGF-I/IGFBP Axis in Critical Illness. , 2008, , 181-198.		1
93	Changes Within the Growth Hormone/Insulin-like Growth Factor I/IGF Binding Protein Axis During Critical Illness. Endocrinology and Metabolism Clinics of North America, 2006, 35, 793-805.	1.2	37
94	Changes Within the GH/IGF-I/IGFBP Axis in Critical Illness. Critical Care Clinics, 2006, 22, 17-28.	1.0	43
95	Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet, The, 2005, 365, 53-59.	6.3	954
96	Mechanisms of Insulin-Induced Alterations in Metabolism during Critical Illness. , 2004, 9, 69-75.		6
97	Contribution of Circulating Lipids to the Improved Outcome of Critical Illness by Glycemic Control with Intensive Insulin Therapy. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 219-226.	1.8	264
98	Regulation of the Somatotropic Axis by Intensive Insulin Therapy during Protracted Critical Illness. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3105-3113.	1.8	57
99	Clinical Potential of Insulin Therapy in Critically Ill Patients. Drugs, 2003, 63, 625-636.	4.9	60
100	Growth Hormone Modulation of the Rat Hepatic Bile Transporter System in Endotoxin-Induced Cholestasis. Endocrinology, 2003, 144, 4008-4017.	1.4	13
101	Regulation of Insulin-Like Growth Factor Binding Protein-1 during Protracted Critical Illness. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5516-5523.	1.8	126
102	Forskolin increases apical sodium conductance in cultured toad kidney cells (A6) by stimulating membrane insertion. Pflugers Archiv European Journal of Physiology, 1999, 438, 195-204.	1.3	15