
David Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3955459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critical Assessment of the Reducing Ability of Breslowâ€type Derivatives and Implications for Carbeneâ€Catalyzed Radical Reactions**. Angewandte Chemie - International Edition, 2021, 60, 26783-26789.	13.8	62
2	Critical Assessment of the Reducing Ability of Breslowâ€type Derivatives and Implications for Carbeneâ€Catalyzed Radical Reactions**. Angewandte Chemie, 2021, 133, 26987-26993.	2.0	8
3	Absolute Templating of M(111) Cluster Surrogates by Galvanic Exchange. Journal of the American Chemical Society, 2020, 142, 16479-16485.	13.7	24
4	Airâ€Stable Oxyallyl Patterns and a Switchable Nâ€Heterocyclic Carbene. Angewandte Chemie, 2020, 132, 11613-11617.	2.0	4
5	Airâ€Stable Oxyallyl Patterns and a Switchable Nâ€Heterocyclic Carbene. Angewandte Chemie - International Edition, 2020, 59, 11516-11520.	13.8	10
6	Stable dicationic dioxoliums and fate of their dioxolyl radicals. Organic Chemistry Frontiers, 2019, 6, 3184-3191.	4.5	2
7	What Are the Radical Intermediates in Oxidative <i>N</i> -Heterocyclic Carbene Organocatalysis?. Journal of the American Chemical Society, 2019, 141, 1109-1117.	13.7	88
8	A computational study of the interplay of steric and electronic effects in the stabilization of 1,3-(diamino)oxyallyls. Journal of Molecular Structure, 2018, 1172, 3-7.	3.6	6
9	Metal free oxidation of vinamidine derivatives: a simple synthesis of α-keto-β-diimine ligands. RSC Advances, 2018, 8, 38346-38350.	3.6	7
10	The serendipitous discovery of a readily available redox-bistable molecule derived from cyclic(alkyl)(amino)carbenes. Organic Chemistry Frontiers, 2018, 5, 2073-2078.	4.5	10
11	The Advantages of Cyclic Over Acyclic Carbenes To Access Isolable Captoâ€Dative Câ€Centered Radicals. Chemistry - A European Journal, 2017, 23, 6206-6212.	3.3	34
12	Stable Di―and Triâ€coordinated Carbon(II) Supported by an Electronâ€Rich βâ€Diketiminate Ligand. Angewand Chemie, 2017, 129, 1051-1055.	dte 2.0	8
13	Stable Di―and Triâ€coordinated Carbon(II) Supported by an Electronâ€Rich βâ€Diketiminate Ligand. Angewand Chemie - International Edition, 2017, 56, 1031-1035.	dte 13.8	22
14	Investigation of the full reversal of selectivity in the reaction of aniline with 1,3-dichloro-1,3-bis(dimethylamino)vinamidinium salts. New Journal of Chemistry, 2017, 41, 15016-15020.	2.8	8
15	A Ruthenium Catalyst for Olefin Metathesis Featuring an Antiâ€Bredt Nâ€Heterocyclic Carbene Ligand. Advanced Synthesis and Catalysis, 2016, 358, 965-969.	4.3	12
16	Room temperature hydroamination of alkynes with anilines catalyzed by anti-Bredt di(amino)carbene gold(i) complexes. New Journal of Chemistry, 2016, 40, 5993-5996.	2.8	17
17	An air-persistent oxyallyl radical cation with simple di(methyl)amino substituents. Chemical Communications, 2016, 52, 11422-11425.	4.1	22
18	Air-Persistent Monomeric (Amino)(carboxy) Radicals Derived from Cyclic (Alkyl)(Amino) Carbenes. Journal of the American Chemical Society, 2015, 137, 7519-7525.	13.7	94

DAVID MARTIN

#	Article	IF	CITATIONS
19	The quest for observation and isolation of oxyallyl derivatives. Organic Chemistry Frontiers, 2015, 2, 1536-1545.	4.5	16
20	Comparative Reactivity of Different Types of Stable Cyclic and Acyclic Mono- and Diamino Carbenes with Simple Organic Substrates. Journal of the American Chemical Society, 2014, 136, 5023-5030.	13.7	106
21	Synthesis and Reactivity of a CAAC–Aminoborylene Adduct: A Heteroâ€Allene or an Organoboron Isoelectronic with Singlet Carbenes. Angewandte Chemie - International Edition, 2014, 53, 13159-13163.	13.8	258
22	Gold-Catalyzed Hydroarylation of Alkenes with Dialkylanilines. Journal of the American Chemical Society, 2014, 136, 13594-13597.	13.7	139
23	Bottleable (Amino)(Carboxy) Radicals Derived from Cyclic (Alkyl)(Amino) Carbenes. Journal of the American Chemical Society, 2013, 135, 18766-18769.	13.7	113
24	Experimental and Computational Studies of Antiâ€Bredt Amidinium Salts. Chemistry - A European Journal, 2013, 19, 14895-14901.	3.3	13
25	³¹ Pâ€NMR Chemical Shifts of Carbene–Phosphinidene Adducts as an Indicator of the l̃€â€Accepting Properties of Carbenes. Angewandte Chemie - International Edition, 2013, 52, 2939-2943.	13.8	447
26	Anti-Bredt N-heterocyclic carbene: an efficient ligand for the gold(i)-catalyzed hydroamination of terminal alkynes with parent hydrazine. Chemical Communications, 2013, 49, 4483.	4.1	72
27	An Airâ€Stable Oxyallyl Radical Cation. Angewandte Chemie - International Edition, 2013, 52, 7014-7017.	13.8	65
28	A Cyclic Diaminocarbene with a Pyramidalized Nitrogen Atom: A Stable Nâ€Heterocyclic Carbene with Enhanced Electrophilicity. Angewandte Chemie - International Edition, 2012, 51, 6172-6175.	13.8	128
29	Stable singlet carbenes as mimics for transition metal centers. Chemical Science, 2011, 2, 389-399.	7.4	584
30	Assessment of the Electronic Properties of P ligands Stemming from Secondary Phosphine Oxides. Chemistry - A European Journal, 2011, 17, 12729-12740.	3.3	59
31	A Brief Survey of Our Contribution to Stable Carbene Chemistry. Organometallics, 2011, 30, 5304-5313.	2.3	400
32	Formation of Quaternary Chiral Centers by Nâ€Heterocyclic Carbene–Cu atalyzed Asymmetric Conjugate Addition Reactions with Grignard Reagents on Trisubstituted Cyclic Enones. Chemistry - A European Journal, 2010, 16, 9890-9904.	3.3	108
33	New P-stereogenic triaminophosphines and their derivatives: synthesis, structure, conformational study, and application as chiral ligands. Tetrahedron: Asymmetry, 2010, 21, 1238-1245.	1.8	21
34	Illuminating Metal-Ion Sensors: Benzimidazolesulfonamide Metal Complexes. Inorganic Chemistry, 2010, 49, 10226-10228.	4.0	19
35	Highly Regio- and Stereocontrolled Formation of Functionalized Tricyclo[4.2.1.0 ^{2,8}]non-3-enes. Journal of Organic Chemistry, 2009, 74, 3783-3791.	3.2	10
36	Enantioselective Cobalt atalyzed [6+2] Cycloadditions of Cycloheptatriene with Alkynes. Advanced Synthesis and Catalysis, 2008, 350, 280-286.	4.3	52

DAVID MARTIN

#	Article	IF	CITATIONS
37	A simple route to chiral phosphinous acid–boranes. Chemical Communications, 2008, , 3031.	4.1	43
38	Looking for a Synergic Effect between NHCs and Chiral P-Ligands. Organic Letters, 2008, 10, 1453-1456.	4.6	32
39	Formation of All-Carbon Quaternary Centers by Copper-Catalyzed Asymmetric Conjugate Addition. Chimia, 2008, 62, 461.	0.6	17
40	Stable P-Heterocyclic Carbenes: Scope and Limitations. Chemistry - an Asian Journal, 2007, 2, 178-187.	3.3	60
41	Copper-Catalyzed Asymmetric Conjugate Addition of Grignard Reagents to Trisubstituted Enones. Construction of All-Carbon Quaternary Chiral Centers. Journal of the American Chemical Society, 2006, 128, 8416-8417.	13.7	279
42	New Synthetic Routes toC-Amino Phosphorus Ylides and their Subsequent Fragmentation into Carbenes and Phosphines. Chemistry - an Asian Journal, 2006, 1, 155-160.	3.3	27
43	Synthesis of Extended Polyphosphacumulenes. Chemistry - A European Journal, 2006, 12, 8444-8450.	3.3	5
44	C-Phosphoniophosphaalkenes as Precursors of 1σ4,3σ2-Diphosphaallenes: Scope and Limitations. European Journal of Inorganic Chemistry, 2005, 2005, 2619-2624.	2.0	14
45	A Stable P-Heterocyclic Carbene. Angewandte Chemie - International Edition, 2005, 44, 1700-1703.	13.8	152
46	Theoretical and Experimental Investigation of the Basicity of Phosphino(silyl)carbenes. Journal of Organic Chemistry, 2005, 70, 5671-5677.	3.2	18
47	Synthesis of a Persistent 1?3,3?3-Diphosphaallyl Cation Featuring a Localized Phosphorus?Carbon Double Bond. European Journal of Inorganic Chemistry, 2004, 2004, 3533-3537.	2.0	8
48	Structural and electrochemical study of metal carbonyl complexes with chelating bis- and tetrakis(diphenylphosphino)tetrathiafulvalenes. Journal of Organometallic Chemistry, 2002, 643-644, 292-300.	1.8	59