
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/395490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceramics International, 2016, 42, 16412-16416.	2.3	316
2	Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber. Carbon, 2010, 48, 4074-4080.	5.4	291
3	Graphene nanosheet- and flake carbonyl iron particle-filled epoxy–silicone composites as thin–thickness and wide-bandwidth microwave absorber. Carbon, 2015, 86, 98-107.	5.4	282
4	Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technology, 2018, 333, 153-159.	2.1	138
5	Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings. Journal of Magnetism and Magnetic Materials, 2009, 321, 25-28.	1.0	129
6	Optimization of electromagnetic matching of carbonyl iron/BaTiO3 composites for microwave absorption. Journal of Magnetism and Magnetic Materials, 2011, 323, 600-606.	1.0	100
7	Lightweight and highly efficient electromagnetic wave-absorbing of 3D CNTs/GNS@CoFe2O4 ternary composite aerogels. Journal of Alloys and Compounds, 2018, 768, 6-14.	2.8	98
8	Enhanced microwave absorption of multi-walled carbon nanotubes/epoxy composites incorporated with ceramic particles. Composites Science and Technology, 2014, 102, 161-168.	3.8	83
9	Temperature-dependent dielectric and microwave absorption properties of SiC /SiC–Al2O3 composites modified by thermal cross-linking procedure. Journal of the European Ceramic Society, 2015, 35, 2991-3003.	2.8	82
10	Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers. RSC Advances, 2017, 7, 27755-27761.	1.7	70
11	Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. Advanced Composites and Hybrid Materials, 2021, 4, 946-956.	9.9	65
12	Multiwalled carbon nanotubes–BaTiO3/silica composites with high complex permittivity and improved electromagnetic interference shielding at elevated temperature. Journal of the European Ceramic Society, 2014, 34, 2229-2237.	2.8	64
13	Highly oriented flake carbonyl iron/carbon fiber composite as thin-thickness and wide-bandwidth microwave absorber. Journal of Alloys and Compounds, 2018, 744, 629-636.	2.8	64
14	Enhanced dielectric and electromagnetic interference shielding properties of FeSiAl/Al 2 O 3 ceramics by plasma spraying. Journal of Alloys and Compounds, 2015, 651, 259-265.	2.8	63
15	Flexible and Transparent Ferroferric Oxide-Modified Silver Nanowire Film for Efficient Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2020, 12, 2826-2834.	4.0	62
16	Unique nanoporous structure derived from Co3O4–C and Co/CoO–C composites towards the ultra-strong electromagnetic absorption. Composites Part B: Engineering, 2021, 213, 108731.	5.9	60
17	Evolution of double magnetic resonance behavior and electromagnetic properties of flake carbonyl iron and multi-walled carbon nanotubes filled epoxy-silicone. Journal of Alloys and Compounds, 2014, 583, 471-475.	2.8	59
18	Synchronously oriented Fe microfiber & flake carbonyl iron/epoxy composites with improved microwave absorption and lightweight feature. Composites Science and Technology, 2019, 184, 107882.	3.8	55

#	Article	lF	CITATIONS
19	Greatly enhanced microwave absorption properties of highly oriented flake carbonyl iron/epoxy resin composites under applied magnetic field. Journal of Materials Science, 2017, 52, 2373-2383.	1.7	52
20	Thin-thickness FeSiAl/flake graphite-filled Al2O3 ceramics with enhanced microwave absorption. Ceramics International, 2017, 43, 870-874.	2.3	51
21	High performance electromagnetic interference shielding of lamellar MoSi2/glass composite coatings by plasma spraying. Journal of Alloys and Compounds, 2016, 666, 359-365.	2.8	42
22	Enhanced microwave absorbing properties of 2.5D SiCf/SiC composites fabricated by a modified precursor infiltration and pyrolysis process. Journal of Alloys and Compounds, 2015, 637, 261-266.	2.8	39
23	Effect of preparation conditions on mechanical, dielectric and microwave absorption properties of SiC fiber/mullite matrix composite. Ceramics International, 2019, 45, 11625-11632.	2.3	37
24	Double-layer structure combined with FSS design for the improvement of microwave absorption of BaTiO3 particles and graphene nanoplatelets filled epoxy coating. Journal of Alloys and Compounds, 2018, 739, 47-51.	2.8	36
25	Novel Magnéli Ti4O7/Ni/poly(vinylidene fluoride) hybrids for high-performance electromagnetic wave absorption. Advanced Composites and Hybrid Materials, 2021, 4, 1027-1038.	9.9	36
26	Improvement of mechanical and dielectric properties of PIP-SiCf/SiC composites by using Ti3SiC2 as inert filler. Ceramics International, 2015, 41, 4199-4206.	2.3	34
27	Silver-modified chromium(III) oxide as multi-band compatible stealth materials for visual/ infrared stealth and radar wave transmission. Composites Science and Technology, 2021, 216, 109038.	3.8	33
28	Ti ³⁺ self-doped dark TiO ₂ nanoparticles with tunable and unique dielectric properties for electromagnetic applications. Journal of Materials Chemistry C, 2021, 9, 1205-1214.	2.7	32
29	Mechanical and dielectric properties of 2.5D SiCf/SiC–Al2O3 composites prepared via precursor infiltration and pyrolysis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 596, 64-70.	2.6	31
30	Dielectric and microwave absorption properties of CB doped SiO2f/PI double-layer composites. Ceramics International, 2018, 44, 14007-14012.	2.3	30
31	Improved mechanical and microwave absorption properties of SiC fiber/mullite matrix composite using hybrid SiC/Ti3SiC2 fillers. Journal of Alloys and Compounds, 2019, 791, 51-59.	2.8	30
32	Progress in water-based metamaterial absorbers: a review. Optical Materials Express, 2022, 12, 1461.	1.6	30
33	Temperature dependence of the electromagnetic properties and microwave absorption of carbonyl iron particles/silicone resin composites. Journal of Magnetism and Magnetic Materials, 2015, 374, 345-349.	1.0	29
34	Effect of Ti3SiC2 addition on microwave absorption property of Ti3SiC2/cordierite coatings. Surface and Coatings Technology, 2015, 270, 39-46.	2.2	29
35	Effect of Carbon Black on Dielectric and Microwave Absorption Properties of Carbon Black/Cordierite Plasma-Sprayed Coatings. Journal of Thermal Spray Technology, 2015, 24, 826-835.	1.6	29
36	NiFe2O4 nanoparticles filled BaTiO3 ceramics for high-performance electromagnetic interference shielding applications. Ceramics International, 2018, 44, 8706-8709.	2.3	29

#	Article	IF	CITATIONS
37	Co substituted BaFe12O19 ceramics with enhanced magnetic resonance behavior and microwave absorption properties in 2.6 – 18†GHz. Ceramics International, 2019, 45, 13859-13864.	2.3	27
38	Dielectric properties of carbon black and carbonyl iron filled epoxy–silicone resin coating. Journal of Materials Science, 2010, 45, 1885-1888.	1.7	26
39	Enhanced Microwave Absorption Properties of Oriented Carbonyl Iron/Carbon Black Composite Induced by Shear Force. Journal of Electronic Materials, 2017, 46, 4903-4911.	1.0	26
40	Microwave absorbing ceramic coatings with multi-walled carbon nanotubes and ceramic powder by polymer pyrolysis route. Composites Science and Technology, 2013, 89, 10-14.	3.8	25
41	Improved mechanical and microwave absorption properties of SiCf/SiC composites with SiO2 filler. Ceramics International, 2021, 47, 14455-14463.	2.3	25
42	Microwave absorption of M-type hexaferrite Ba1-Ca Fe12O19 (x â‰ ¤ €¯0.4) ceramics in 2.6–18â€ ⁻ GHz. Cera International, 2019, 45, 7102-7107.	mics 2.3	24
43	Effect of magnetic fillers on the electromagnetic properties of CaCu ₃ Ti ₄ O ₁₂ –epoxy composites within the 2–18 GHz range. Journal of Materials Chemistry C, 2013, 1, 536-541.	2.7	23
44	Temperature dependence of dielectric properties of SiCf/PyC/SiC composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 195, 12-19.	1.7	23
45	Aligned Fe microfiber reinforced epoxy composites with tunable electromagnetic properties and improved microwave absorption. Journal of Materials Science, 2019, 54, 4671-4679.	1.7	23
46	Comparison of thermal insulation capability between conventional and nanostructured plasma sprayed YSZ coating on Ni 3 Al substrates. Ceramics International, 2017, 43, 4324-4329.	2.3	22
47	Balancing Between Polarization and Conduction Loss toward Strong Electromagnetic Wave Absorption of Hard Carbon Particles with Morphology Heterogeneity. ACS Applied Materials & Interfaces, 2022, 14, 19836-19846.	4.0	22
48	Electroless plating preparation and electromagnetic properties of Co-coated carbonyl iron particles/polyimide composite. Journal of Magnetism and Magnetic Materials, 2016, 401, 251-258.	1.0	21
49	Enhanced microwave absorption of plasma-sprayed Ti3SiC2/glass composite coatings. Journal of Materials Science, 2017, 52, 832-842.	1.7	21
50	Enhanced high temperature dielectric polarization of barium titanate/magnesium aluminum spinel composites and their potential in microwave absorption. Journal of the European Ceramic Society, 2020, 40, 728-734.	2.8	20
51	Microwave absorption and mechanical properties of SiCf/SiOC composites with SiO2 fillers. Ceramics International, 2021, 47, 8478-8485.	2.3	20
52	The effect of temperature on structure and permittivity of carbon microspheres as efficient absorbent prepared by facile and large-scale method. Carbon, 2021, 185, 650-659.	5.4	19
53	Temperature-dependent dielectric and microwave absorption properties of silicon carbide fiber-reinforced oxide matrices composite. Journal of Materials Science, 2018, 53, 15465-15473.	1.7	18
54	Plasma-sprayed ZrB2/Al2O3 ceramics with excellent high temperature electromagnetic interference shielding properties. Journal of the European Ceramic Society, 2021, 41, 1071-1075.	2.8	18

#	Article	IF	CITATIONS
55	Electromagnetic-wave absorption property of Cr2O3–TiO2 coating with frequency selective surface. Journal of Alloys and Compounds, 2019, 803, 111-117.	2.8	17
56	Tunable magnetic coupling and dipole polarization of core-shell Magnéli Ti4O7 ceramic/magnetic metal possessing broadband microwave absorption properties. Ceramics International, 2021, 47, 33373-33381.	2.3	17
57	Influence of synergistic effect of Mn valence state and oxygen vacancy concentration on microwave absorbing properties of CaMnO3. Ceramics International, 2022, 48, 9882-9889.	2.3	17
58	Dielectric and microwave absorption properties of plasma sprayed short carbon fibers/glass composite coatings. Journal of Materials Science: Materials in Electronics, 2016, 27, 1783-1790.	1.1	15
59	Fabrication of SiCf/SiC-mullite composite with improved pretreatment condition via precursor infiltration-sintering combined with infiltration-pyrolysis process. Ceramics International, 2019, 45, 16062-16069.	2.3	15
60	Protein-Derived Hybrid Carbon Nanospheres with Tunable Microwave Absorbing Performance in the X-Band. ACS Applied Electronic Materials, 2021, 3, 2685-2693.	2.0	14
61	Single-Layer and Double-Layer Microwave Absorbers Based on Graphene Nanosheets/Epoxy Resin Composite. Nano, 2017, 12, 1750089.	0.5	13
62	CaCu3Ti4O12 particles and MWCNT-filled microwave absorber with improved microwave absorption by FSS incorporation. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	11
63	Flexible thin microwave absorbing patch: flake carbonyl iron and chopped carbon fibers oriented in resin matrix. Journal of Materials Science: Materials in Electronics, 2020, 31, 1442-1450.	1.1	11
64	Optimization of electromagnetic matching of Ba1-Ca Fe11.4Co0.6O19 (0.2 ≤ ≤0.8) ceramics for microwave absorption within 2.6–18ÂGHz. Ceramics International, 2020, 46, 13102-13106.	2.3	10
65	The electromagnetic absorbing properties of plasma-sprayed TiC/Al2O3 coatings under oblique incident microwave irradiation. Ceramics International, 2021, 47, 22864-22868.	2.3	10
66	Effect of Critical Plasma Spray Parameters on Microstructure and Microwave Absorption Property of Ti3SiC2/Cordierite Coatings. Journal of Thermal Spray Technology, 2016, 25, 639-649.	1.6	9
67	Effects of calcium doping on yttrium titanate for microwave absorbing applications. Journal of Alloys and Compounds, 2018, 741, 700-706.	2.8	9
68	Effect of different kinds of SiC fibers on microwave absorption and mechanical properties of SiCf/SiC composites. Journal of Materials Science: Materials in Electronics, 2021, 32, 25668-25678.	1.1	9
69	Enhanced dielectric and microwave absorption properties of CaMnO3 powders by Sr doping in the 8.2–18ÂGHz band. Ceramics International, 2021, 47, 13339-13343.	2.3	9
70	Electromagnetic interference shielding properties of nitrogen-doped graphene/epoxy composites. Journal of Materials Science: Materials in Electronics, 2021, 32, 25649-25655.	1.1	8
71	Enhanced dielectric and microwave absorption properties of Y2Ti2O7 ceramics by Sr doping. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	7
72	Study on the electromagnetic interference shielding effectiveness of TiN film. Journal of Materials Science: Materials in Electronics, 2018, 29, 9052-9057.	1.1	6

YUCHANG QING

#	Article	IF	CITATIONS
73	Cobalt-substituted Ba0.8Ca0.2Fe12O19 ceramics for wide-bandwidth microwave absorption within 2.6–18â€~CHz. Ceramics International, 2019, 45, 21491-21496.	2.3	6
74	Enhanced microwave absorption and electromagnetic shielding property of (1-x)K0.5Na0.5NbO3 ~ xAl2O3 nano-ceramics. Ceramics International, 2020, 46, 22738-22744.	2.3	6
75	Magnetic properties and microwave absorption of Ni0.7Zn0.3A0.05Fe1.95O4 (A = La, Ce, and Nd) powders within the range of 2–18ÂGHz. Ceramics International, 2021, 47, 28764-28769.	2.3	6
76	SiC-Coated Carbon Nanotubes with Enhanced Oxidation Resistance and Stable Dielectric Properties. Materials, 2021, 14, 2770.	1.3	5
77	Simultaneous enhancement of mechanical and microwave absorption properties with a novel in-situ synthesis α-Al2O3 fillers for SiCf/SiC composites. Journal of the European Ceramic Society, 2022, 42, 4723-4734.	2.8	5
78	Aligned polycrystallineÂironÂfiber/carbon fiber composites with enhanced microwave absorption properties and lightweight feature. Journal of Materials Science: Materials in Electronics, 2021, 32, 15412-15424.	1.1	4
79	Magnetic and microwave absorption properties in 2.6–18ÂGHz of A-site or B-site substituted BaFe12O19 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 12382-12388.	1.1	3
80	Effect of N2 flow rate on electromagnetic interference shielding effectiveness of TiNx films. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	2
81	Effect of graphene nanosheets and potassium sodium niobate on microwave absorbing and mechanical properties of quartz fiber/polyimide composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 19192-19199.	1.1	2
82	Effects of Multi-Components on the Microwave Absorption and Dielectric Properties of Plasma-Sprayed Carbon Nanotube/Y2O3/ZrB2 Ceramics. Nanomaterials, 2021, 11, 2640.	1.9	2
83	Temperature dependence of the microwave absorption performance of carbonyl iron powder/boron-modified phenolic resin composite coating. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	1
84	Study on effect of doping content on the microstructure, dielectric and microwave absorption properties of x-NiO/CaMn1â^'xO3. Journal of Materials Science: Materials in Electronics, 2021, 32, 14874.	1.1	0