Wolfgang Ludwig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3954697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imposing equilibrium on experimental 3-D stress fields using Hodge decomposition and FFT-based optimization. Mechanics of Materials, 2022, 164, 104109.	3.2	1
2	Cyclic Deformation Induced Residual Stress Evolution and 3D Short Fatigue Crack Growth Investigated by Advanced Synchrotron Tomography Techniques. Materials, 2021, 14, 1562.	2.9	1
3	Reconstructing grains in 3D through 4D Scanning Precession Electron Diffraction. Microscopy and Microanalysis, 2021, 27, 2494-2495.	0.4	2
4	Orientation selective grain sublimation–deposition in snow under temperature gradient metamorphism observed with diffraction contrast tomography. Cryosphere, 2021, 15, 4381-4398.	3.9	5
5	Three-dimensional reconstruction of intragranular strain and orientation in polycrystals by near-field X-ray diffraction. Current Opinion in Solid State and Materials Science, 2020, 24, 100851.	11.5	21
6	In situ 4D mechanical testing of structural materials: The data challenge. Current Opinion in Solid State and Materials Science, 2020, 24, 100834.	11.5	10
7	X-ray orientation microscopy using topo-tomography and multi-mode diffraction contrast tomography. Current Opinion in Solid State and Materials Science, 2020, 24, 100832.	11.5	8
8	Quantifying microscale drivers for fatigue failure via coupled synchrotron X-ray characterization and simulations. Nature Communications, 2020, 11, 3189.	12.8	30
9	Grain boundary mobilities in polycrystals. Acta Materialia, 2020, 191, 211-220.	7.9	61
10	Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations. Journal of the Mechanics and Physics of Solids, 2018, 115, 208-229.	4.8	80
11	Incipient Bulk Polycrystal Plasticity Observed by Synchrotron In-Situ Topotomography. Materials, 2018, 11, 2018.	2.9	18
12	3D characterization of partially recrystallized Al using high resolution diffraction contrast tomography. Scripta Materialia, 2018, 157, 72-75.	5.2	17
13	Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials. Npj Computational Materials, 2018, 4, .	8.7	120
14	Three-dimensional grain growth in pure iron. Part I. statistics on the grain level. Acta Materialia, 2018, 156, 76-85.	7.9	48
15	Simulation of Short Fatigue Crack Propagation in a 3D Experimental Microstructure. Advanced Engineering Materials, 2017, 19, 1600721.	3.5	25
16	Assessing reliability of fatigue indicator parameters for small crack growth via a probabilistic framework. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 045010.	2.0	40
17	Comparison of voiding mechanisms in semi-crystalline polyamide 6 during tensile and creep tests. Polymer Testing, 2016, 49, 137-146.	4.8	17
18	Three dimensional quantification of anisotropic void evolution in deformed semi-crystalline polyamide 6. International Journal of Plasticity, 2016, 83, 19-36.	8.8	34

WOLFGANG LUDWIG

#	Article	IF	CITATIONS
19	Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries. Scientific Reports, 2016, 6, 27994.	3.3	53
20	Three-dimensional full-field X-ray orientation microscopy. Scientific Reports, 2016, 6, 20618.	3.3	33
21	A feasibility study of full-field X-ray orientation microscopy at the onset of deformation twinning. Journal of Applied Crystallography, 2016, 49, 544-555.	4.5	11
22	Coupling Diffraction Contrast Tomography with the Finite Element Method. Advanced Engineering Materials, 2016, 18, 903-912.	3.5	24
23	Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy. IUCrJ, 2016, 3, 32-42.	2.2	34
24	A study of deformation twinning in a titanium alloy by X-ray diffraction contrast tomography. Acta Materialia, 2016, 105, 417-428.	7.9	56
25	An accurate projection model for diffraction image formation and inversion using a polychromatic cone beam. Journal of Applied Crystallography, 2015, 48, 334-343.	4.5	8
26	Nanovoid morphology and distribution in deformed HDPE studied by magnified synchrotron radiation holotomography. Polymer, 2014, 55, 6439-6443.	3.8	36
27	Three-Dimensional X-ray Diffraction (3DXRD) Imaging Techniques. , 2014, , 280-321.		1
28	3D X-RAY DIFFRACTION MICROSCOPY. , 2014, , 205-253.		1
29	Comparison between a near-field and a far-field indexing approach for characterization of a polycrystalline sample volume containing more than 1500 grains. Journal of Applied Crystallography, 2014, 47, 1402-1416.	4.5	17
30	Direct Observation of Grain Boundary Migration during Recrystallization within the Bulk of a Moderately Deformed Aluminium Single Crystal. Materials Transactions, 2014, 55, 128-136.	1.2	24
31	Reconstruction of local orientation in grains using a discrete representation of orientation space. Journal of Applied Crystallography, 2014, 47, 1826-1840.	4.5	29
32	Discrete representation of local orientation in grains using diffraction contrast tomography. , 2013, ,		1
33	Advances in X-ray diffraction contrast tomography: flexibility in the setup geometry and application to multiphase materials. Journal of Applied Crystallography, 2013, 46, 297-311.	4.5	108
34	Validation of three-dimensional diffraction contrast tomography reconstructions by means of electron backscatter diffraction characterization. Journal of Applied Crystallography, 2013, 46, 1145-1150.	4.5	18
35	Box-Scan: A Novel 3DXRD Method for Studies of Recrystallization and Grain Growth. Materials Science Forum, 2012, 715-716, 518-520.	0.3	5
36	Interface Orientation Distribution during Grain Growth in Bulk SrTiO3 Measured by Means of 3D X-Ray Diffraction Contrast Tomography. Materials Research Society Symposia Proceedings, 2012, 1421, 58.	0.1	0

WOLFGANG LUDWIG

#	Article	IF	CITATIONS
37	3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography. Acta Materialia, 2011, 59, 590-601.	7.9	166
38	Analysis of Snow Microstructure by Means of Xâ€Ray Diffraction Contrast Tomography. Advanced Engineering Materials, 2011, 13, 128-135.	3.5	30
39	3D Xâ€ray Microtomography Volume Correlation to Study Fatigue Crack Growth. Advanced Engineering Materials, 2011, 13, 186-193.	3.5	15
40	On the Use of Laguerre Tessellations for Representations of 3D Grain Structures. Advanced Engineering Materials, 2011, 13, 165-170.	3.5	54
41	Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 1307-1325.	6.6	132
42	Influence of closure on the 3D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3D volume correlation. Acta Materialia, 2010, 58, 2957-2967.	7.9	70
43	X-Ray Micro-Tomography Coupled to the Extended Finite Element Method to Investigate Microstructurally Short Fatigue Cracks. Materials Science Forum, 2008, 567-568, 301-304.	0.3	3
44	Advances in synchrotron hard X-ray based imaging. Comptes Rendus Physique, 2008, 9, 624-641.	0.9	60
45	X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case. Journal of Applied Crystallography, 2008, 41, 302-309.	4.5	221
46	X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. II. The combined case. Journal of Applied Crystallography, 2008, 41, 310-318.	4.5	159
47	Fast X-ray tomography and acoustic emission study of damage in metals during continuous tensile tests. Acta Materialia, 2007, 55, 6806-6815.	7.9	75
48	High-resolution three-dimensional mapping of individual grains in polycrystals by topotomography. Journal of Applied Crystallography, 2007, 40, 905-911.	4.5	42
49	Fatigue crack propagation: In situ visualization using X-ray microtomography and 3D simulation using the extended finite element method. Acta Materialia, 2006, 54, 1111-1122.	7.9	124
50	Advances in synchrotron radiation microtomography. Scripta Materialia, 2006, 55, 41-46.	5.2	166
51	Three-dimensional snow images by X-ray microtomography. Annals of Glaciology, 2001, 32, 75-81.	1.4	107
52	Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography. Journal of Synchrotron Radiation, 2000, 7, 196-201.	2.4	58
53	Hard x-ray phase imaging using simple propagation of a coherent synchrotron radiation beam. Journal Physics D: Applied Physics, 1999, 32, A145-A151.	2.8	138
54	Grain Tracking at the High Energy Materials Science Beamline of the Petra III Synchrotron Radiation Source. Materials Science Forum, 0, 652, 70-73.	0.3	2