Todd R Graham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3954614/publications.pdf

Version: 2024-02-01

70 papers 6,226 citations

42 h-index 91828 69 g-index

84 all docs 84 docs citations

times ranked

84

5152 citing authors

#	Article	IF	CITATIONS
1	AP-3 shows off its flexibility for the cryo-EM camera. Journal of Biological Chemistry, 2022, 298, 101491.	1.6	1
2	An orthologous gene coevolution network provides insight into eukaryotic cellular and genomic structure and function. Science Advances, 2022, 8, eabn0105.	4.7	10
3	Informing the government or fostering public debate?. Journal of Language and Politics, 2021, 20, 539-562.	1.0	7
4	Structural basis of the P4B ATPase lipid flippase activity. Nature Communications, 2021, 12, 5963.	5.8	14
5	When Journalists Go "Below the Line― Comment Spaces at <i>The Guardian</i> (2006–2017). Journalism Studies, 2020, 21, 107-126.	1.2	13
6	Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158581.	1,2	9
7	Exofacial membrane composition and lipid metabolism regulates plasma membrane P4-ATPase substrate specificity. Journal of Biological Chemistry, 2020, 295, 17997-18009.	1.6	7
8	Yeast synaptobrevin, Snc1, engages distinct routes of postendocytic recycling mediated by a sorting nexin, Rcy1-COPI, and retromer. Molecular Biology of the Cell, 2020, 31, 944-962.	0.9	22
9	Transport mechanism of P4 ATPase phosphatidylcholine flippases. ELife, 2020, 9, .	2.8	40
10	Politicians and political parties' use of social media in-between elections. Journal of Applied Journalism and Media Studies, 2020, 9, 91-103.	0.1	2
11	The PQ-loop protein Any1 segregates Drs2 and Neo1 functions required for viability and plasma membrane phospholipid asymmetry. Journal of Lipid Research, 2019, 60, 1032-1042.	2.0	8
12	Phospholipid flippases in membrane remodeling and transport carrier biogenesis. Current Opinion in Cell Biology, 2019, 59, 8-15.	2.6	47
13	Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs. Journal of Biological Chemistry, 2019, 294, 1794-1806.	1.6	65
14	Personal Branding on Twitter. Digital Journalism, 2017, 5, 443-459.	2.5	139
15	COPI mediates recycling of an exocytic SNARE by recognition of a ubiquitin sorting signal. ELife, 2017, 6, .	2.8	54
16	New platform, old habits? Candidates' use of Twitter during the 2010 British and Dutch general election campaigns. New Media and Society, 2016, 18, 765-783.	3.1	175
17	The Essential Neo1 Protein from Budding Yeast Plays a Role in Establishing Aminophospholipid Asymmetry of the Plasma Membrane. Journal of Biological Chemistry, 2016, 291, 15727-15739.	1.6	46
18	Directed evolution of a sphingomyelin flippase reveals mechanism of substrate backbone discrimination by a P4-ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4460-6.	3.3	24

#	Article	IF	CITATIONS
19	Neo1 and phosphatidylethanolamine contribute to vacuole membrane fusion in <i>Saccharomyces cerevisiae </i> . Cellular Logistics, 2016, 6, e1228791.	0.9	27
20	Decoding P4-ATPase substrate interactions. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 513-527.	2.3	35
21	Exploring genetic suppression interactions on a global scale. Science, 2016, 354, .	6.0	157
22	â€We need to get together and make ourselves heard': everyday online spaces as incubators of political action. Information, Communication and Society, 2016, 19, 1373-1389.	2.6	26
23	From everyday conversation to political action: Talking austerity in online †third spaces'. European Journal of Communication, 2015, 30, 648-665.	1.1	23
24	Role of Flippases, Scramblases and Transfer Proteins in Phosphatidylserine Subcellular Distribution. Traffic, 2015, 16, 35-47.	1.3	233
25	Phosphatidylserine translocation at the yeast <i>trans</i> olgi network regulates protein sorting into exocytic vesicles. Molecular Biology of the Cell, 2015, 26, 4674-4685.	0.9	56
26	Zwischen Haushalt und politischer Ã-ffentlichkeit. Forschungsjournal Soziale Bewegungen, 2015, 28, 65-77.	0.6	0
27	Discursive Equality and Everyday Talk Online: The Impact of "Superparticipants― Journal of Computer-Mediated Communication, 2014, 19, 625-642.	1.7	111
28	Arl1 gets into the membrane remodeling business with a flippase and ArfGEF. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2691-2692.	3.3	3
29	BETWEEN BROADCASTING POLITICAL MESSAGES AND INTERACTING WITH VOTERS. Information, Communication and Society, 2013, 16, 692-716.	2.6	251
30	TWITTER AS A NEWS SOURCE. Journalism Practice, 2013, 7, 446-464.	1.5	225
31	Type IV P-type ATPases Distinguish Mono- versus Diacyl Phosphatidylserine Using a Cytofacial Exit Gate in the Membrane Domain. Journal of Biological Chemistry, 2013, 288, 19516-19527.	1.6	45
32	Two-gate mechanism for phospholipid selection and transport by type IV P-type ATPases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E358-67.	3.3	93
33	Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport. Journal of Cell Biology, 2013, 202, 875-886.	2.3	124
34	Auto-inhibition of Drs2p, a Yeast Phospholipid Flippase, by Its Carboxyl-terminal Tail. Journal of Biological Chemistry, 2013, 288, 31807-31815.	1.6	56
35	SOCIAL MEDIA AS BEAT. Journalism Practice, 2012, 6, 403-419.	1.5	261
36	Phospholipid flippases: Building asymmetric membranes and transport vesicles. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1068-1077.	1.2	187

#	Article	IF	Citations
37	Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E290-8.	3.3	103
38	Genome-Wide Analysis Reveals the Vacuolar pH-Stat of Saccharomyces cerevisiae. PLoS ONE, 2011, 6, e17619.	1.1	77
39	Coordination of Golgi functions by phosphatidylinositol 4-kinases. Trends in Cell Biology, 2011, 21, 113-121.	3.6	159
40	Interplay of proteins and lipids in generating membrane curvature. Current Opinion in Cell Biology, 2010, 22, 430-436.	2.6	194
41	Control of Protein and Sterol Trafficking by Antagonistic Activities of a Type IV P-type ATPase and Oxysterol Binding Protein Homologue. Molecular Biology of the Cell, 2009, 20, 2920-2931.	0.9	41
42	Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16586-16591.	3.3	147
43	A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nature Biotechnology, 2009, 27, 369-377.	9.4	254
44	Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nature Cell Biology, 2009, 11 , $1421-1426$.	4.6	119
45	Linking phospholipid flippases to vesicle-mediated protein transport. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 612-619.	1.2	83
46	P4-ATPase Requirement for AP-1/Clathrin Function in Protein Transport from the <i>trans</i> -Golgi Network and Early Endosomes. Molecular Biology of the Cell, 2008, 19, 3526-3535.	0.9	102
47	Genome-Wide Analysis of Sterol-Lipid Storage and Trafficking in Saccharomyces cerevisiae. Eukaryotic Cell, 2008, 7, 401-414.	3.4	50
48	Yeast P4-ATPases Drs2p and Dnf1p Are Essential Cargos of the NPFXD/Sla1p Endocytic Pathway. Molecular Biology of the Cell, 2007, 18, 487-500.	0.9	63
49	Exploring the Mode-of-Action of Bioactive Compounds by Chemical-Genetic Profiling in Yeast. Cell, 2006, 126, 611-625.	13.5	447
50	Measuring translocation of fluorescent lipid derivatives across yeast Golgi membranes. Methods, 2006, 39, 163-168.	1.9	11
51	Roles for the Drs2p-Cdc50p Complex in Protein Transport and Phosphatidylserine Asymmetry of the Yeast Plasma Membrane. Traffic, 2006, 7, 1503-1517.	1.3	90
52	Dissection of Swa2p/Auxilin Domain Requirements for Cochaperoning Hsp70 Clathrin-uncoating Activity In Vivo. Molecular Biology of the Cell, 2006, 17, 3281-3290.	0.9	28
53	The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. Journal of Cell Science, 2004, 117, 711-722.	1.2	97
54	Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10614-10619.	3.3	184

#	Article	IF	Citations
55	Flippases and vesicle-mediated protein transport. Trends in Cell Biology, 2004, 14, 670-677.	3.6	173
56	Membrane Targeting: Getting Arl to the Golgi. Current Biology, 2004, 14, R483-R485.	1.8	27
57	Solution structure of the ubiquitin-binding domain in Swa2p from Saccharomyces cerevisiae. Proteins: Structure, Function and Bioinformatics, 2004, 54, 784-793.	1.5	22
58	Requirement for Neo1p in Retrograde Transport from the Golgi Complex to the Endoplasmic Reticulum. Molecular Biology of the Cell, 2003, 14, 4971-4983.	0.9	93
59	An Essential Subfamily of Drs2p-related P-Type ATPases Is Required for Protein Trafficking between Golgi Complex and Endosomal/Vacuolar System. Molecular Biology of the Cell, 2002, 13, 3162-3177.	0.9	238
60	Protein Transport to the Yeast Vacuole. , 2002, , 322-357.		5
61	Drs2p-Dependent Formation of Exocytic Clathrin-Coated Vesicles In Vivo. Current Biology, 2002, 12, 1623-1627.	1.8	146
62	The auxilin-like phosphoprotein Swa2p is required for clathrin function in yeast. Current Biology, 2000, 10, 1349-1358.	1.8	96
63	Organization of the Yeast Golgi Complex into at Least Four Funtionally Distinct Compartments. Molecular Biology of the Cell, 2000, 11, 171-182.	0.9	52
64	Introduction of Kex2 cleavage sites in fusion proteins for monitoring localization and transport in yeast secretory pathway. Methods in Enzymology, 2000, 327, 107-118.	0.4	4
65	Role for Drs2p, a P-Type Atpase and Potential Aminophospholipid Translocase, in Yeast Late Golgi Function. Journal of Cell Biology, 1999, 147, 1223-1236.	2.3	241
66	The High Osmolarity Glycerol Response (HOG) MAP Kinase Pathway Controls Localization of a Yeast Golgi Glycosyltransferase. Journal of Cell Biology, 1998, 143, 935-946.	2.3	40
67	ARF Is Required for Maintenance of Yeast Golgi and Endosome Structure and Function. Molecular Biology of the Cell, 1998, 9, 653-670.	0.9	127
68	An arf1î" Synthetic Lethal Screen Identifies a New Clathrin Heavy Chain Conditional Allele That Perturbs Vacuolar Protein Transport in Saccharomyces cerevisiae. Genetics, 1998, 150, 577-589.	1.2	48
69	The Golgi complex of <i>Saccharomyces cerevisiae </i> . Canadian Journal of Botany, 1995, 73, 343-346.	1.2	2
70	Interaction of Dictyostelium discoideum \hat{l} ±-mannosidase with beef liver phosphomannosyl receptor. Biochemical and Biophysical Research Communications, 1983, 116, 541-546.	1.0	7