
Nicholas D Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3954255/publications.pdf Version: 2024-02-01

NICHOLAS D EVANS

#	Article	IF	CITATIONS
1	It Doesn't Apply to Me, So It Isn't Real: People Are Likely to Deny Science if It Contradicts Their Personality. Social Psychological and Personality Science, 2022, 13, 1032-1046.	2.4	1
2	Romantic nostalgia as a resource for healthy relationships. Journal of Social and Personal Relationships, 2022, 39, 2181-2206.	1.4	13
3	Mental transportation mediates nostalgia's psychological benefits. Cognition and Emotion, 2021, 35, 84-95.	1.2	19
4	The role of lithium in the osteogenic bioactivity of clay nanoparticles. Biomaterials Science, 2021, 9, 3150-3161.	2.6	20
5	On the Interpersonal Function of Metaphor Use. Social Psychology, 2021, 52, 23-35.	0.3	2
6	Synthetic Nanoclay Gels Do Not Cause Skin Irritation in Healthy Human Volunteers. ACS Biomaterials Science and Engineering, 2021, 7, 2716-2722.	2.6	5
7	Tailoring the size of ultrasound responsive lipid-shelled nanodroplets by varying production parameters and environmental conditions. Ultrasonics Sonochemistry, 2021, 73, 105482.	3.8	13
8	Investigation of the Acoustic Vaporization Threshold of Lipid-Coated Perfluorobutane Nanodroplets Using Both High-Speed Optical Imaging and Acoustic Methods. Ultrasound in Medicine and Biology, 2021, 47, 1826-1843.	0.7	21
9	What shall we call God? An exploration of metaphors coded from descriptions of God from a large U.S. undergraduate sample. PLoS ONE, 2021, 16, e0254626.	1.1	4
10	Antibiotic-Loaded Polymersomes for Clearance of Intracellular <i>Burkholderia thailandensis</i> . ACS Nano, 2021, 15, 19284-19297.	7.3	10
11	Physical Attraction Scale $\hat{a} \in$ " Short Version: Cross-Cultural Validation. Journal of Relationships Research, 2020, 11, .	0.6	2
12	Development of a Nanodroplet Formulation for Triggered Release of BIO for Bone Fracture Healing. Proceedings (mdpi), 2020, 78, .	0.2	0
13	Injectable nanoclay gels for angiogenesis. Acta Biomaterialia, 2019, 100, 378-387.	4.1	46
14	Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials, 2018, 159, 204-214.	5.7	201
15	Polymersome nanoparticles for delivery of Wnt-activating small molecules. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1267-1277.	1.7	15
16	Combinatorial delivery of bioactive molecules by a nanoparticle-decorated and functionalized biodegradable scaffold. Journal of Materials Chemistry B, 2018, 6, 4437-4445.	2.9	15
17	Collective Cell Behavior in Mechanosensing ofÂSubstrate Thickness. Biophysical Journal, 2018, 114, 2743-2755.	0.2	38
18	Remodelling of human bone on the chorioallantoic membrane of the chicken egg: <i>De novo</i> bone formation and resorption. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1877-1890.	1.3	13

NICHOLAS D EVANS

#	Article	IF	CITATIONS
19	PEGylated liposomes associate with Wnt3A protein and expand putative stem cells in human bone marrow populations. Nanomedicine, 2017, 12, 845-863.	1.7	19
20	Single-Molecule Imaging of Wnt3A Protein Diffusion on Living Cell Membranes. Biophysical Journal, 2017, 113, 2762-2767.	0.2	5
21	The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: a refinement animal model for tissue engineering. Scientific Reports, 2016, 6, 32168.	1.6	81
22	Nanoanalytical Electron Microscopy Reveals a Sequential Mineralization Process Involving Carbonate-Containing Amorphous Precursors. ACS Nano, 2016, 10, 6826-6835.	7.3	53
23	Quantification of intracellular payload release from polymersome nanoparticles. Scientific Reports, 2016, 6, 29460.	1.6	37
24	Transient Canonical Wnt Stimulation Enriches Human Bone Marrow Mononuclear Cell Isolates for Osteoprogenitors. Stem Cells, 2016, 34, 418-430.	1.4	15
25	The role of material structure and mechanical properties in cell–matrix interactions. Journal of Materials Chemistry B, 2014, 2, 2345.	2.9	66
26	Epithelial mechanobiology, skin wound healing, and the stem cell niche. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 397-409.	1.5	209
27	Augmenting Endogenous Wnt Signaling Improves Skin Wound Healing. PLoS ONE, 2013, 8, e76883.	1.1	55
28	The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14170-14175.	3.3	429
29	Changes in embryonic stem cell colony morphology and early differentiation markers driven by colloidal crystal topographical cues. , 2012, 23, 135-146.		56
30	Gene-expression analysis reveals that embryonic stem cells cultured under osteogenic conditions produce mineral non-specifically compared to marrow stromal cells or osteoblasts. , 2012, 24, 211-223.		16
31	Extracellular matrix-mediated osteogenic differentiation of murine embryonic stem cells. Biomaterials, 2010, 31, 3244-3252.	5.7	86
32	Complexity in biomaterials for tissue engineering. Nature Materials, 2009, 8, 457-470.	13.3	1,495
33	Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nature Materials, 2009, 8, 763-770.	13.3	223
34	Substrate stiffness affects early differentiation events in embryonic stem cells. , 2009, 18, 1-14.		387
35	The Potential of Stem Cells in Tissue Engineering. , 2007, , 85-105.		0
36	Scaffolds for stem cells. Materials Today, 2006, 9, 26-33.	8.3	121

#	Article	IF	CITATIONS
37	Glucose-dependent changes in NAD(P)H-related fluorescence lifetime of adipocytes and fibroblasts in vitro: Potential for non-invasive glucose sensing in diabetes mellitus. Journal of Photochemistry and Photobiology B: Biology, 2005, 80, 122-129.	1.7	47
38	In vivo glucose monitoring: the clinical reality and the promise. Biosensors and Bioelectronics, 2005, 20, 1897-1902.	5.3	184
39	Fluorescence-based glucose sensors. Biosensors and Bioelectronics, 2005, 20, 2555-2565.	5.3	530
40	Uncoupling of Nutrient Metabolism From Insulin Secretion by Overexpression of Cytosolic Phospholipase A2. Diabetes, 2005, 54, 116-124.	0.3	19
41	The in vitro differentiation of rat neural stem cells into an insulin-expressing phenotype. Biochemical and Biophysical Research Communications, 2005, 326, 570-577.	1.0	20
42	Non-Invasive Glucose Monitoring by NAD(P)H Autofluorescence Spectroscopy in Fibroblasts and Adipocytes: A Model for Skin Glucose Sensing. Diabetes Technology and Therapeutics, 2003, 5, 807-816.	2.4	35