Chun-sheng Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3954213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-coding RNAs as regulators in epigenetics. Oncology Reports, 2017, 37, 3-9.	1.2	493
2	CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Letters, 2016, 375, 263-273.	3.2	448
3	Blood Exosomes Endowed with Magnetic and Targeting Properties for Cancer Therapy. ACS Nano, 2016, 10, 3323-3333.	7.3	362
4	Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Laboratory Investigation, 2010, 90, 144-155.	1.7	327
5	RNA-seq of 272 gliomas revealed a novel, recurrent <i>PTPRZ1-MET</i> fusion transcript in secondary glioblastomas. Genome Research, 2014, 24, 1765-1773.	2.4	316
6	MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Molecular Cancer, 2010, 9, 229.	7.9	269
7	Long Noncoding RNA <i>NEAT1</i> , Regulated by the EGFR Pathway, Contributes to Glioblastoma Progression Through the WNT/ î² -Catenin Pathway by Scaffolding EZH2. Clinical Cancer Research, 2018, 24, 684-695.	3.2	264
8	Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood–brain barrier. International Journal of Pharmaceutics, 2009, 379, 285-292.	2.6	247
9	HOTAIR, a cell cycle–associated long noncoding RNA and a strong predictor of survival, is preferentially expressed in classical and mesenchymal glioma. Neuro-Oncology, 2013, 15, 1595-1603.	0.6	212
10	m6A RNA methylation regulators contribute to malignant progression and have clinical prognostic impact in gliomas. Aging, 2019, 11, 1204-1225.	1.4	209
11	Long non-coding RNA HOTAIR promotes glioblastoma cell cycle progression in an EZH2 dependent manner. Oncotarget, 2015, 6, 537-546.	0.8	207
12	MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild) Tj ETQq() 0 0 rgBT 1.1	/Overlock 10 194
13	Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Letters, 2021, 499, 60-72.	3.2	194
14	miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro-Oncology, 2012, 14, 712-719.	0.6	167

15	Star-branched amphiphilic PLA-b-PDMAEMA copolymers for co-delivery of miR-21 inhibitor and doxorubicin to treat glioma. Biomaterials, 2014, 35, 2322-2335.	5.7	167
16	Molecular classification of gliomas based on whole genome gene expression: a systematic report of 225 samples from the Chinese Glioma Cooperative Group. Neuro-Oncology, 2012, 14, 1432-1440.	0.6	163
17	MiRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Research, 2010, 1359, 14-21.	1.1	161
10	AC1MMYR2, an Inhibitor of Dicer-Mediated Biogenesis of Oncomir miR-21, Reverses	0.4	154

18 Epithelial–Mesenchymal Transition and Suppresses Tumor Growth and Progression. Cancer Research, 0.4 156 2013, 73, 5519-5531.

#	Article	IF	CITATIONS
19	A novel cell cycle-associated lncRNA, HOXA11-AS, is transcribed from the 5-prime end of the HOXA transcript and is a biomarker of progression in glioma. Cancer Letters, 2016, 373, 251-259.	3.2	156
20	Co-delivery of as-miR-21 and 5-FU by Poly(amidoamine) Dendrimer Attenuates Human Glioma Cell Growth in Vitro. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 303-314.	1.9	155
21	DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Letters, 2015, 359, 198-205.	3.2	148
22	Paracrine and epigenetic control of CAF-induced metastasis: the role of HOTAIR stimulated by TGF-ß1 secretion. Molecular Cancer, 2018, 17, 5.	7.9	148
23	Downregulated microRNA-200a promotes EMT and tumor growth through the Wnt/Î2-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncology Reports, 2013, 29, 1579-1587.	1.2	147
24	Seizure characteristics and outcomes in 508 Chinese adult patients undergoing primary resection of low-grade gliomas: a clinicopathological study. Neuro-Oncology, 2012, 14, 230-241.	0.6	143
25	Lnc-TALC promotes O6-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nature Communications, 2019, 10, 2045.	5.8	143
26	miR-21 improves the neurological outcome after traumatic brain injury in rats. Scientific Reports, 2014, 4, 6718.	1.6	141
27	LncRNA proï¬ l e of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. International Journal of Oncology, 2012, 40, 2004-12.	1.4	135
28	Multistage Delivery Nanoparticle Facilitates Efficient CRISPR/dCas9 Activation and Tumor Growth Suppression In Vivo. Advanced Science, 2019, 6, 1801423.	5.6	128
29	Identification of MMP-9 specific microRNA expression profile as potential targets of anti-invasion therapy in glioblastoma multiforme. Brain Research, 2011, 1411, 108-115.	1.1	125
30	Nanocomposites Inhibit the Formation, Mitigate the Neurotoxicity, and Facilitate the Removal of β-Amyloid Aggregates in Alzheimer's Disease Mice. Nano Letters, 2019, 19, 674-683.	4.5	124
31	Increased Microglial Exosomal miR-124-3p Alleviates Neurodegeneration and Improves Cognitive Outcome after rmTBI. Molecular Therapy, 2020, 28, 503-522.	3.7	121
32	MiR-124 governs glioma growth and angiogenesis and enhances chemosensitivity by targeting R-Ras and N-Ras. Neuro-Oncology, 2014, 16, 1341-1353.	0.6	120
33	MiR-181d acts as a tumor suppressor in glioma by targeting K-ras and Bcl-2. Journal of Cancer Research and Clinical Oncology, 2012, 138, 573-584.	1.2	117
34	High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. Journal of Translational Medicine, 2012, 10, 119.	1.8	116
35	miR-146b-5p inhibits glioma migration and invasion by targeting MMP16. Cancer Letters, 2013, 339, 260-269.	3.2	116
36	Correlation of IDH1 Mutation with Clinicopathologic Factors and Prognosis in Primary Glioblastoma: A Report of 118 Patients from China. PLoS ONE, 2012, 7, e30339.	1.1	114

#	Article	IF	CITATIONS
37	Wnt/beta-Catenin Signaling in Glioma. Journal of NeuroImmune Pharmacology, 2012, 7, 740-749.	2.1	113
38	Comprehensive analysis of the functional microRNA–mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Research, 2013, 41, e203-e203.	6.5	112
39	Downregulation of miR-21 Enhances Chemotherapeutic Effect of Taxol in Breast Carcinoma Cells. Technology in Cancer Research and Treatment, 2010, 9, 77-86.	0.8	111
40	HOTAIR is a therapeutic target in glioblastoma. Oncotarget, 2015, 6, 8353-8365.	0.8	105
41	miR-137 is frequently down-regulated in glioblastoma and is a negative regulator of Cox-2. European Journal of Cancer, 2012, 48, 3104-3111.	1.3	102
42	ALKBH5 Facilitates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvironment. Cancer Research, 2021, 81, 5876-5888.	0.4	101
43	Engineering blood exosomes for tumor-targeting efficient gene/chemo combination therapy. Theranostics, 2020, 10, 7889-7905.	4.6	100
44	Tat-BMPs-PAMAM Conjugates Enhance Therapeutic Effect of Small Interference RNA on U251 Glioma Cells <i>In Vitro</i> and <i>In Vivo</i> . Human Gene Therapy, 2010, 21, 417-426.	1.4	99
45	MicroRNA roles in beta-catenin pathway. Molecular Cancer, 2010, 9, 252.	7.9	98
46	The CRISPRâ€Cas13a Geneâ€Editing System Induces Collateral Cleavage of RNA in Glioma Cells. Advanced Science, 2019, 6, 1901299.	5.6	98
47	VHL regulates the effects of miR-23b on glioma survival and invasion via suppression of HIF-1α/VEGF and β-catenin/Tcf-4 signaling. Neuro-Oncology, 2012, 14, 1026-1036.	0.6	97
48	The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes. Theranostics, 2018, 8, 1540-1557.	4.6	96
49	Dualâ€Locking Nanoparticles Disrupt the PDâ€1/PDâ€L1 Pathway for Efficient Cancer Immunotherapy. Advanced Materials, 2019, 31, e1905751.	11.1	95
50	MiR-218 reverses high invasiveness of glioblastoma cells by targeting the oncogenic transcription factor LEF1. Oncology Reports, 2012, 28, 1013-1021.	1.2	92
51	MicroRNAâ€21 Expression is regulated by βâ€catenin/STAT3 Pathway and Promotes Glioma Cell Invasion by Direct Targeting RECK. CNS Neuroscience and Therapeutics, 2012, 18, 573-583.	1.9	91
52	FUNDC1-dependent mitophagy induced by tPA protects neurons against cerebral ischemia-reperfusion injury. Redox Biology, 2021, 38, 101792.	3.9	91
53	MiR-410 regulates MET to influence the proliferation and invasion of glioma. International Journal of Biochemistry and Cell Biology, 2012, 44, 1711-1717.	1.2	90
54	Reduction of miR-21 induces glioma cell apoptosis via activating caspase 9 and 3. Oncology Reports, 2010, 24, 195-201.	1.2	88

#	Article	IF	CITATIONS
55	Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells. Brain Research, 2010, 1366, 27-37.	1.1	88
56	AURKA induces EMT by regulating histone modification through Wnt/β-catenin and PI3K/Akt signaling pathway in gastric cancer. Oncotarget, 2016, 7, 33152-33164.	0.8	88
57	MicroRNA miR-451 downregulates the PI3K/AKT pathway through CAB39 in human glioma. International Journal of Oncology, 2012, 40, 1105-12.	1.4	85
58	HOXA13 is a potential GBM diagnostic marker and promotes glioma invasion by activating the Wnt and TGF-β pathways. Oncotarget, 2015, 6, 27778-27793.	0.8	84
59	Systemic Delivery of Monoclonal Antibodies to the Central Nervous System for Brain Tumor Therapy. Advanced Materials, 2019, 31, e1805697.	11.1	84
60	miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. International Journal of Oncology, 2010, 36, 913-20.	1.4	82
61	EZH2 is a negative prognostic factor and exhibits pro-oncogenic activity in glioblastoma. Cancer Letters, 2015, 356, 929-936.	3.2	81
62	Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy. Biomaterials, 2020, 258, 120275.	5.7	81
63	Wholeâ€genome microRNA expression profiling identifies a 5â€microRNA signature as a prognostic biomarker in Chinese patients with primary glioblastoma multiforme. Cancer, 2013, 119, 814-824.	2.0	79
64	A Bioinspired Platform for Effective Delivery of Protein Therapeutics to the Central Nervous System. Advanced Materials, 2019, 31, e1807557.	11.1	79
65	Blockage of a miR-21/EGFR regulatory feedback loop augments anti-EGFR therapy in glioblastomas. Cancer Letters, 2014, 342, 139-149.	3.2	78
66	MiRNA-181b suppresses IGF-1R and functions as a tumor suppressor gene in gliomas. Rna, 2013, 19, 552-560.	1.6	76
67	Efficient Delivery of Therapeutic miRNA Nanocapsules for Tumor Suppression. Advanced Materials, 2015, 27, 292-297.	11.1	76
68	miR-19a and miR-19b Overexpression in Gliomas. Pathology and Oncology Research, 2013, 19, 847-853.	0.9	74
69	JAK2/STAT3 targeted therapy suppresses tumor invasion via disruption of the EGFRvIII/JAK2/STAT3 axis and associated focal adhesion in EGFRvIII-expressing glioblastoma. Neuro-Oncology, 2014, 16, 1229-1243.	0.6	74
70	<scp>HOTAIR</scp> , a long noncoding <scp>RNA</scp> , is a marker of abnormal cell cycle regulation in lung cancer. Cancer Science, 2018, 109, 2717-2733.	1.7	74
71	Resveratrol inhibits glioma cell growth via targeting oncogenic microRNAs and multiple signaling pathways. International Journal of Oncology, 2015, 46, 1739-1747.	1.4	73
72	A lentivirus-mediated miR-23b sponge diminishes the malignant phenotype of glioma cells in vitro and in vivo. Oncology Reports, 2014, 31, 1573-1580.	1.2	72

#	Article	IF	CITATIONS
73	PRMT2 links histone H3R8 asymmetric dimethylation to oncogenic activation and tumorigenesis of glioblastoma. Nature Communications, 2018, 9, 4552.	5.8	72
74	A Compound AC1Q3QWB Selectively Disrupts HOTAIR-Mediated Recruitment of PRC2 and Enhances Cancer Therapy of DZNep. Theranostics, 2019, 9, 4608-4623.	4.6	72
75	The Putative Tumor Suppressor miR-524–5p Directly Targets Jagged-1 and Hes-1 in Glioma. Carcinogenesis, 2012, 33, 2276-2282.	1.3	71
76	Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. International Journal of Oncology, 2009, 34, 1653-60.	1.4	70
77	PUMA is a novel target of miR-221/222 in human epithelial cancers. International Journal of Oncology, 2010, 37, 1621-6.	1.4	70
78	Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncology Reports, 2012, 27, 854-60.	1.2	69
79	STAT3 inhibitor WP1066 attenuates miRNA-21 to suppress human oral squamous cell carcinoma growth in vitro and in vivo. Oncology Reports, 2014, 31, 2173-2180.	1.2	68
80	The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo. Journal of Neuro-Oncology, 2010, 97, 41-51.	1.4	67
81	Overexpressed let-7a inhibits glioma cell malignancy by directly targeting K-ras, independently of PTEN. Neuro-Oncology, 2013, 15, 1491-1501.	0.6	67
82	miR-21-5p alleviates leakage of injured brain microvascular endothelial barrier in vitro through suppressing inflammation and apoptosis. Brain Research, 2016, 1650, 31-40.	1.1	66
83	High Â-catenin/Tcf-4 activity confers glioma progression via direct regulation of AKT2 gene expression. Neuro-Oncology, 2011, 13, 600-609.	0.6	65
84	<scp>M</scp> i <scp>R</scp> â€21 Modulates h <scp>TERT</scp> Through a <scp>STAT</scp> 3â€Dependent Manner on Glioblastoma Cell Growth. CNS Neuroscience and Therapeutics, 2012, 18, 722-728.	1.9	65
85	PRDM1 is directly targeted by miR-30a-5p and modulates the Wnt/β-catenin pathway in a Dkk1-dependent manner during glioma growth. Cancer Letters, 2013, 331, 211-219.	3.2	65
86	Sequence-Dependent Synergistic Inhibition of Human Glioma Cell Lines by Combined Temozolomide and miR-21 Inhibitor Gene Therapy. Molecular Pharmaceutics, 2012, 9, 2636-2645.	2.3	64
87	miR-221/222 is the regulator of Cx43 expression in human glioblastoma cells. Oncology Reports, 2012, 27, 1504-10.	1.2	63
88	Targeted design and identification of AC1NOD4Q to block activity of HOTAIR by abrogating the scaffold interaction with EZH2. Clinical Epigenetics, 2019, 11, 29.	1.8	63
89	MiR-24 regulates the proliferation and invasion of glioma by ST7L via β-catenin/Tcf-4 signaling. Cancer Letters, 2013, 329, 174-180.	3.2	62
90	Glioblastoma with an oligodendroglioma component: distinct clinical behavior, genetic alterations, and outcome. Neuro-Oncology, 2012, 14, 518-525.	0.6	61

#	Article	IF	CITATIONS
91	MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin. International Journal of Oncology, 2012, 40, 1162-70.	1.4	60
92	In Situ Modification of the Tumor Cell Surface with Immunomodulating Nanoparticles for Effective Suppression of Tumor Growth in Mice. Advanced Materials, 2019, 31, e1902542.	11.1	58
93	MicroRNA-221 and -222 Regulate Radiation Sensitivity by Targeting the PTEN Pathway. International Journal of Radiation Oncology Biology Physics, 2011, 80, 240-248.	0.4	57
94	UBE2C induces EMT through Wnt/ \hat{l}^2 -catenin and PI3K/Akt signaling pathways by regulating phosphorylation levels of Aurora-A. International Journal of Oncology, 2017, 50, 1116-1126.	1.4	57
95	Engineering chimeric antigen receptor-T cells for cancer treatment. Molecular Cancer, 2018, 17, 32.	7.9	57
96	Mesenchymal glioblastoma constitutes a major ceRNA signature in the TGF-β pathway. Theranostics, 2018, 8, 4733-4749.	4.6	56
97	Nuclear Translocation of β-catenin is Essential for Glioma Cell Survival. Journal of NeuroImmune Pharmacology, 2012, 7, 892-903.	2.1	54
98	Involvement of FOS-mediated miR-181b/miR-21 signalling in the progression of malignant gliomas. European Journal of Cancer, 2013, 49, 3055-3063.	1.3	54
99	EGFR/c-myc axis regulates TGFβ/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas. Cancer Letters, 2017, 406, 12-21.	3.2	54
100	Genomeâ€Wide CRISPRâ€Cas9 Screening Identifies NFâ€₽̂B/E2F6 Responsible for EGFRvIIIâ€Associated Temozolomide Resistance in Glioblastoma. Advanced Science, 2019, 6, 1900782.	5.6	53
101	Downregulation of PIK3CB by siRNA Suppresses Malignant Glioma Cell Growth <i>In Vitro</i> and <i>In Vivo</i> . Technology in Cancer Research and Treatment, 2006, 5, 271-280.	0.8	51
102	Inactivation of PI3K/AKT signaling inhibits glioma cell growth through modulation of β-catenin-mediated transcription. Brain Research, 2010, 1366, 9-17.	1.1	50
103	AC1MMYR2 impairs high dose paclitaxel-induced tumor metastasis by targeting miR-21/CDK5 axis. Cancer Letters, 2015, 362, 174-182.	3.2	50
104	EGFRvIII/integrin β3 interaction in hypoxic and vitronectinenriching microenvironment promote GBM progression and metastasis. Oncotarget, 2016, 7, 4680-4694.	0.8	50
105	SNORD76, a box C/D snoRNA, acts as a tumor suppressor in glioblastoma. Scientific Reports, 2015, 5, 8588.	1.6	49
106	Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility. BMC Cancer, 2013, 13, 234.	1.1	48
107	Development of transferrin functionalized poly(ethylene glycol)/poly(lactic acid) amphiphilic block copolymeric micelles as a potential delivery system targeting brain glioma. Journal of Materials Science: Materials in Medicine, 2010, 21, 2673-2681.	1.7	47
108	Loss of ATRX suppresses ATM dependent DNA damage repair by modulating H3K9me3 to enhance temozolomide sensitivity in glioma. Cancer Letters, 2018, 419, 280-290.	3.2	47

#	Article	IF	CITATIONS
109	The Effects of Antisense AKT2 RNA on the Inhibition of Malignant Glioma Cell Growth in vitro and in vivo. Journal of Neuro-Oncology, 2006, 76, 1-11.	1.4	46
110	Expression and function of miR-27b in human glioma. Oncology Reports, 2011, 26, 1617-21.	1.2	45
111	NanoRNP Overcomes Tumor Heterogeneity in Cancer Treatment. Nano Letters, 2019, 19, 7662-7672.	4.5	45
112	RUNX1 contributes to the mesenchymal subtype of glioblastoma in a TGFÎ ² pathway-dependent manner. Cell Death and Disease, 2019, 10, 877.	2.7	45
113	Rapid design and development of CRISPR-Cas13a targeting SARS-CoV-2 spike protein. Theranostics, 2021, 11, 649-664.	4.6	43
114	Unique genome-wide map of TCF4 and STAT3 targets using ChIP-seq reveals their association with new molecular subtypes of glioblastoma. Neuro-Oncology, 2013, 15, 279-289.	0.6	42
115	ECFL7 is an intercellular ECFR signal messenger that plays an oncogenic role in glioma. Cancer Letters, 2017, 384, 9-18.	3.2	42
116	Evaluation of folateâ€PAMAM for the delivery of antisense oligonucleotides to rat C6 glioma cells <i>in vitro</i> and <i>in vivo</i> . Journal of Biomedical Materials Research - Part A, 2010, 93A, 585-594.	2.1	41
117	Overexpression of septin 7 suppresses glioma cell growth. Journal of Neuro-Oncology, 2010, 98, 329-340.	1.4	40
118	Evaluation of blood circulation of polysaccharide surface-decorated PLA nanoparticles. Carbohydrate Polymers, 2008, 72, 75-81.	5.1	39
119	Reprogramming carcinoma associated fibroblasts by AC1MMYR2 impedes tumor metastasis and improves chemotherapy efficacy. Cancer Letters, 2016, 374, 96-106.	3.2	39
120	An in vitro Study on the Suppressive Effect of Glioma Cell Growth Induced by Plasmid-Based Small Interference RNA (siRNA) Targeting Human Epidermal Growth Factor Receptor. Journal of Neuro-Oncology, 2005, 74, 267-273.	1.4	38
121	Differential Expression of Notch Family Members in Astrocytomas and Medulloblastomas. Pathology and Oncology Research, 2009, 15, 703-710.	0.9	38
122	MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab. Molecular Cancer, 2014, 13, 63.	7.9	38
123	miRNA interventions serve as â€~magic bullets' in the reversal of glioblastoma hallmarks. Oncotarget, 2015, 6, 38628-38642.	0.8	38
124	Global changes of mRNA expression reveals an increased activity of the interferon-induced signal transducer and activator of transcription (STAT) pathway by repression of miR-221/222 in glioblastoma U251 cells. International Journal of Oncology, 2010, 36, 1503-12.	1.4	37
125	Changes in soil bacterial community structure as a result of incorporation of Brassica plants compared with continuous planting eggplant and chemical disinfection in greenhouses. PLoS ONE, 2017, 12, e0173923.	1.1	37
126	Elevated signature of a gene module coexpressed with CDC20 marks genomic instability in glioma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6975-6984.	3.3	37

#	Article	IF	CITATIONS
127	LncRNA PRADX-mediated recruitment of PRC2/DDX5 complex suppresses UBXN1 expression and activates NF-κB activity, promoting tumorigenesis. Theranostics, 2021, 11, 4516-4530.	4.6	37
128	MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas. Journal of Neuro-Oncology, 2012, 106, 217-224.	1.4	36
129	Multidimensional analysis of gene expression reveals TGFB111-induced EMT contributes to malignant progression of astrocytomas. Oncotarget, 2014, 5, 12593-12606.	0.8	36
130	ICAT inhibits glioblastoma cell proliferation by suppressing Wnt/β-catenin activity. Cancer Letters, 2015, 357, 404-411.	3.2	35
131	A novel Granzyme B nanoparticle delivery system simulates immune cell functions for suppression of solid tumors. Theranostics, 2019, 9, 7616-7627.	4.6	35
132	Blood exosomes-based targeted delivery of cPLA2 siRNA and metformin to modulate glioblastoma energy metabolism for tailoring personalized therapy. Neuro-Oncology, 2022, 24, 1871-1883.	0.6	35
133	Antisense and Dominant-Negative AKT2 cDNA Inhibits Glioma Cell Invasion. Tumor Biology, 2004, 25, 172-178.	0.8	34
134	Growth Inhibition against Intracranial C6 Glioma Cells by Stereotactic Delivery of BCNU by Controlled Release from poly(D,L-lactic acid) Nanoparticles. Technology in Cancer Research and Treatment, 2009, 8, 61-70.	0.8	34
135	Genome-wide identification of TCF7L2/TCF4 target miRNAs reveals a role for miR-21 in Wnt-driven epithelialÃ ⁻ ¿½cancer. International Journal of Oncology, 2012, 40, 519-26.	1.4	34
136	Smart multifunctional core–shell nanospheres with drug and gene co-loaded for enhancing the therapeutic effect in a rat intracranial tumor model. Nanoscale, 2012, 4, 6501.	2.8	34
137	The CRISPR/Cas9 system targeting EGFR exon 17 abrogates NF-κB activation via epigenetic modulation of UBXN1 in EGFRwt/vIII glioma cells. Cancer Letters, 2017, 388, 269-280.	3.2	34
138	Treatment Progress of Immune Checkpoint Blockade Therapy for Glioblastoma. Frontiers in Immunology, 2020, 11, 592612.	2.2	34
139	PTRF/cavin-1 remodels phospholipid metabolism to promote tumor proliferation and suppress immune responses in glioblastoma by stabilizing cPLA2. Neuro-Oncology, 2021, 23, 387-399.	0.6	34
140	Targeting EZH2 regulates tumor growth and apoptosis through modulating mitochondria dependent cell-death pathway in HNSCC. Oncotarget, 2015, 6, 33720-33732.	0.8	34
141	Inhibitory effects of adenovirus mediated COX-2, Akt1 and PIK3R1 shRNA on the growth of malignant tumor cells in vitro and in vivo. International Journal of Oncology, 2009, 35, 583-91.	1.4	33
142	Combination treatment with doxorubicin and microRNA-21 inhibitor synergistically augments anticancer activity through upregulation of tumor suppressing genes. International Journal of Oncology, 2015, 46, 1589-1600.	1.4	33
143	Combination gene therapy with PTEN and EGFR siRNA suppresses U251 malignant glioma cell growth in vitro and in vivo. Medical Oncology, 2010, 27, 843-852.	1.2	32
144	Use of Thymidine Kinase Gene-Modified Endothelial Progenitor Cells as a Vector Targeting Angiogenesis in Glioma Gene Therapy. Oncology, 2010, 78, 94-102.	0.9	32

#	Article	IF	CITATIONS
145	LY294002 enhances cytotoxicity of temozolomide in glioma by down-regulation of the PI3K/Akt pathway. Molecular Medicine Reports, 2012, 5, 575-9.	1.1	32
146	Inhibition of STAT3 reverses alkylator resistance through modulation of the AKT and β-catenin signaling pathways. Oncology Reports, 2011, 26, 1173-80.	1.2	32
147	AKT2 expression is associated with glioma malignant progression and required for cell survival and invasion. Oncology Reports, 2010, 24, 65-72.	1.2	31
148	Downregulation of Dicer enhances tumor cell proliferation and invasion. International Journal of Oncology, 2010, 37, 299-305.	1.4	31
149	New insights into the roles of ncRNA in the STAT3 pathway. Future Oncology, 2012, 8, 723-730.	1.1	30
150	Targeting of BMI-1 with PTC-209 inhibits glioblastoma development. Cell Cycle, 2018, 17, 1199-1211.	1.3	30
151	Combination LSD1 and HOTAIR-EZH2 inhibition disrupts cell cycle processes and induces apoptosis in glioblastoma cells. Pharmacological Research, 2021, 171, 105764.	3.1	30
152	SNORD47, a box C/D snoRNA, suppresses tumorigenesis in glioblastoma. Oncotarget, 2017, 8, 43953-43966.	0.8	30
153	MicroRNA-566 modulates vascular endothelial growth factor by targeting Von Hippel-Landau in human glioblastoma in vitro and in vivo. Molecular Medicine Reports, 2016, 13, 379-385.	1.1	28
154	Phosphatidylcholineâ€Engineered Exosomes for Enhanced Tumor Cell Uptake and Intracellular Antitumor Drug Delivery. Macromolecular Bioscience, 2021, 21, e2100042.	2.1	28
155	Antisense MMP-9 RNA inhibits malignant glioma cell growth in vitro and in vivo. Neuroscience Bulletin, 2013, 29, 83-93.	1.5	27
156	Signal Peptide Peptidase, Encoded by <i><scp>HM</scp>13</i> , Contributes to Tumor Progression by Affecting <scp>EGFR</scp> v <scp>III</scp> Secretion Profiles in Glioblastoma. CNS Neuroscience and Therapeutics, 2017, 23, 257-265.	1.9	27
157	Glioma-derived exosomes hijack the blood–brain barrier to facilitate nanocapsule delivery via LCN2. Journal of Controlled Release, 2022, 345, 537-548.	4.8	27
158	Surface biofunctionalization of PLA nanoparticles through amphiphilic polysaccharide coating and ligand coupling: Evaluation of biofunctionalization and drug releasing behavior. Carbohydrate Polymers, 2007, 67, 417-426.	5.1	26
159	Suppression of breast cancer cells <i>in vitro</i> by polyamidoamineâ€dendrimerâ€mediated 5â€fluorouracil chemotherapy combined with antisense microâ€RNA 21 gene therapy. Journal of Applied Polymer Science, 2009, 114, 3760-3766.	1.3	26
160	Antitumor effect of aspirin in glioblastoma cells by modulation of β-catenin/T-cell factor–mediated transcriptional activity. Journal of Neurosurgery, 2011, 115, 780-788.	0.9	26
161	Genetic oxidative stress variants and glioma risk in a Chinese population: a hospital-based case–control study. BMC Cancer, 2012, 12, 617.	1.1	26
162	Synthesis of star-branched PLA-b-PMPC copolymer micelles as long blood circulation vectors to enhance tumor-targeted delivery of hydrophobic drugs inÂvivo. Materials Chemistry and Physics, 2016, 180, 184-194.	2.0	26

#	Article	IF	CITATIONS
163	High-throughput sequencing of the immune repertoire in oncology: Applications for clinical diagnosis, monitoring, and immunotherapies. Cancer Letters, 2018, 416, 42-56.	3.2	26
164	PTRF/CAVIN1, regulated by SHC1 through the EGFR pathway, is found in urine exosomes as a potential biomarker of ccRCC. Carcinogenesis, 2020, 41, 274-283.	1.3	26
165	Identification of miRNA-Mediated Core Gene Module for Glioma Patient Prediction by Integrating High-Throughput miRNA, mRNA Expression and Pathway Structure. PLoS ONE, 2014, 9, e96908.	1.1	26
166	Increased expression of Akt2 and activity of PI3K and cell proliferation with the ascending of tumor grade of human gliomas. Clinical Neurology and Neurosurgery, 2010, 112, 324-327.	0.6	25
167	Omics-based integrated analysis identified ATRX as a biomarker associated with glioma diagnosis and prognosis. Cancer Biology and Medicine, 2019, 16, 784-796.	1.4	25
168	Analysis of miR-221 and p27 expression in human gliomas. Molecular Medicine Reports, 2009, 2, 651-6.	1.1	24
169	Significance of miR-196b in Tumor-Related Epilepsy of Patients with Gliomas. PLoS ONE, 2012, 7, e46218.	1.1	24
170	Aspirinâ€∤ TMZ â€coloaded Microspheres Exert Synergistic Antiglioma Efficacy via Inhibition of βâ€catenin Transactivation. CNS Neuroscience and Therapeutics, 2013, 19, 98-108.	1.9	24
171	<scp>AJAP</scp> 1 is Dysregulated at an Early Stage of Gliomagenesis and Suppresses Invasion Through Cytoskeleton Reorganization. CNS Neuroscience and Therapeutics, 2014, 20, 429-437.	1.9	24
172	Effects of diesel exhaust particles on microRNA-21 in human bronchial epithelial cells and potential carcinogenic mechanisms. Molecular Medicine Reports, 2015, 12, 2329-2335.	1.1	24
173	HOTAIR upregulates an 18-gene cell cycle-related mRNA network in glioma. International Journal of Oncology, 2017, 50, 1271-1278.	1.4	24
174	Single-Cell Transcriptomics of Glioblastoma Reveals a Unique Tumor Microenvironment and Potential Immunotherapeutic Target Against Tumor-Associated Macrophage. Frontiers in Oncology, 2021, 11, 710695.	1.3	24
175	The Different Role of Notch1 and Notch2 in Astrocytic Gliomas. PLoS ONE, 2013, 8, e53654.	1.1	24
176	Construction of novel brainâ€ŧargeting gene delivery system by natural magnetic nanoparticles. Journal of Applied Polymer Science, 2011, 121, 3446-3454.	1.3	22
177	Over-expression of Wild-type p53-induced phosphatase 1 confers poor prognosis of patients with gliomas. Brain Research, 2012, 1444, 65-75.	1.1	22
178	Down-regulation of miR-106b suppresses the growth of human glioma cells. Journal of Neuro-Oncology, 2013, 112, 179-189.	1.4	22
179	Downregulation of miRNA-146a-5p promotes malignant transformation of mesenchymal stromal/stem cells by glioma stem-like cells. Aging, 2020, 12, 9151-9172.	1.4	22
180	HuMiTar: A sequence-based method for prediction of human microRNA targets. Algorithms for Molecular Biology, 2008, 3, 16.	0.3	21

#	Article	IF	CITATIONS
181	β-catenin/Tcf-4 complex transcriptionally regulates AKT1 in glioma. International Journal of Oncology, 2011, 39, 883-90.	1.4	21
182	Tissue plasminogen activator disrupts the blood-brain barrier through increasing the inflammatory response mediated by pericytes after cerebral ischemia. Aging, 2019, 11, 10167-10182.	1.4	20
183	Neuronal STAT3/HIF-1α/PTRF axis-mediated bioenergetic disturbance exacerbates cerebral ischemia-reperfusion injury via PLA2G4A. Theranostics, 2022, 12, 3196-3216.	4.6	19
184	Inhibitory effects of adenovirus mediated Akt1 and PIK3R1 shRNA on the growth of malignant tumor cells in vitro and in vivo. Cancer Biology and Therapy, 2009, 8, 1002-1009.	1.5	18
185	Inhibition of C6 glioma in vivo by combination chemotherapy of implantation of polymer wafer and intracarotid perfusion of transferrin-decorated nanoparticles. Oncology Reports, 2011, 27, 121-8.	1.2	18
186	Identification of a Core miRNA-Pathway Regulatory Network in Glioma by Therapeutically Targeting miR-181d, miR-21, miR-23b, β-Catenin, CBP, and STAT3. PLoS ONE, 2014, 9, e101903.	1.1	18
187	Silencing of IKKε using siRNA inhibits proliferation and invasion of glioma cells in vitro and in vivo. International Journal of Oncology, 2012, 41, 169-78.	1.4	17
188	Identifying Ki-67 specific miRNA–mRNA interactions in malignant astrocytomas. Neuroscience Letters, 2013, 546, 36-41.	1.0	17
189	Suppression of matrix metalloproteinase-9 expression by RNA interference inhibits SGC7901 gastric adenocarcinoma cell growth and invasion in vitro and in vivo. Medical Oncology, 2010, 27, 774-784.	1.2	16
190	Upregulation of miR-20a and miR-106b is involved in the acquisition of malignancy of pediatric brainstem gliomas. Oncology Reports, 2012, 28, 1293-1300.	1.2	16
191	The adherens junction-associated protein 1 is a negative transcriptional regulator of MAGEA2, which potentiates temozolomide-induced apoptosis in GBM. International Journal of Oncology, 2014, 44, 1243-1251.	1.4	16
192	Tumor Microenvironmentâ€Tailored Weakly Cellâ€Interacted Extracellular Delivery Platform Enables Precise Antibody Release and Function. Advanced Functional Materials, 2019, 29, 1903296.	7.8	16
193	Expression of p-Akt and COX-2 in Gastric Adenocarcinomas and Adenovirus Mediated Akt1 and COX-2 ShRNA Suppresses SGC-7901 Gastric Adenocarcinoma and U251 Glioma Cell Growth In Vitro and In Vivo. Technology in Cancer Research and Treatment, 2009, 8, 467-478.	0.8	15
194	EGFRâ€vIII downregulated H2AZK4/7AC though the PI3K/AKTâ€HDAC2 axis to regulate cell cycle progression. Clinical and Translational Medicine, 2020, 9, 10.	1.7	15
195	Multifunctional Nanomodulators Regulate Multiple Pathways To Enhance Antitumor Immunity. ACS Applied Bio Materials, 2020, 3, 4635-4642.	2.3	15
196	EGFR/EGFRvIII remodels the cytoskeleton via epigenetic silencing of AJAP1 in glioma cells. Cancer Letters, 2017, 403, 119-127.	3.2	14
197	The effects of surface charge on the intra-tumor penetration of drug delivery vehicles with tumor progression. Journal of Materials Chemistry B, 2018, 6, 3331-3339.	2.9	14
198	HOTAIR Up-Regulation Activates NF-κB to Induce Immunoescape in Gliomas. Frontiers in Immunology, 2021, 12, 785463.	2.2	14

#	Article	IF	CITATIONS
199	PTRF/Cavin-1 as a Novel RNA-Binding Protein Expedites the NF-κB/PD-L1 Axis by Stabilizing IncRNA NEAT1, Contributing to Tumorigenesis and Immune Evasion in Glioblastoma. Frontiers in Immunology, 2021, 12, 802795.	2.2	14
200	<scp>BCL</scp> 2 <scp>A</scp> 1 is a Potential Biomarker for Postoperative Seizure Control in Patients with Lowâ€grade Gliomas. CNS Neuroscience and Therapeutics, 2013, 19, 882-888.	1.9	13
201	Identification of long non-coding RNA HERC2P2 as a tumor suppressor in glioma. Carcinogenesis, 2019, 40, 956-964.	1.3	13
202	Early administration of MPC-n(IVIg) selectively accumulates in ischemic areas to protect inflammation-induced brain damage from ischemic stroke. Theranostics, 2021, 11, 8197-8217.	4.6	13
203	Single-cell RNA-seq reveals RAD51AP1 as a potent mediator of EGFRvIII in human glioblastomas. Aging, 2019, 11, 7707-7722.	1.4	13
204	Protective Effects of Ulinastatin on Proliferation and Cytokine Release of Splenocytes from Rats with Severe Acute Pancreatitis. European Surgical Research, 2006, 38, 445-450.	0.6	12
205	SURFACE MULTI-FUNCTIONALIZATION OF POLY(LACTIC ACID) NANOPARTICLES AND C6 GLIOMA CELL TARGETING in vivo. Chinese Journal of Polymer Science (English Edition), 2009, 27, 231.	2.0	12
206	Upregulation of SEPT7 Gene Inhibits Invasion of Human Glioma Cells. Cancer Investigation, 2010, 28, 248-258.	0.6	11
207	Homotrimer cavin1 interacts with caveolin1 to facilitate tumor growth and activate microglia through extracellular vesicles in glioma. Theranostics, 2020, 10, 6674-6694.	4.6	11
208	Notch1 induces enhanced expression of Δ-like-1 in the U251MG glioma cell line. International Journal of Molecular Medicine, 2009, 24, 445-51.	1.8	10
209	Preparation of injectable paclitaxel sustained release microspheres by spray drying for inhibition of glioma <i>in vitro</i> . Journal of Applied Polymer Science, 2010, 115, 1534-1539.	1.3	10
210	Realâ€Time Quantification of Cell Internalization Kinetics by Functionalized Bioluminescent Nanoprobes. Advanced Materials, 2019, 31, e1902469.	11.1	10
211	A High Frequency of MSH6 G268A Polymorphism and Survival Association in Glioblastoma. International Journal of Neuroscience, 2012, 123, 114-120.	0.8	9
212	<scp>BASI</scp> , A Potent Small Molecular Inhibitor, Inhibits Glioblastoma Progression by Targeting micro <scp>RNA</scp> â€mediated <i>î²</i> atenin Signaling. CNS Neuroscience and Therapeutics, 2014, 20, 830-839.	1.9	9
213	Precise editing of FGFR3-TACC3 fusion genes with CRISPR-Cas13a in glioblastoma. Molecular Therapy, 2021, 29, 3305-3318.	3.7	9
214	Preparation of Carmustineâ€loaded PLA ultrasmallâ€nanoparticles by adjusting micellar behavior of surfactants. Journal of Applied Polymer Science, 2008, 110, 2446-2452.	1.3	8
215	The effect of umbrella-type branching on the blood circulation and tumor targeting of star-branched PLA-PMPC copolymer micelles. Science China Technological Sciences, 2021, 64, 71-82.	2.0	8
216	Synergistic inhibition of human glioma cell line by temozolomide and PAMAMâ€mediated miRâ€21i. Journal of Applied Polymer Science, 2013, 127, 570-576.	1.3	7

#	Article	IF	CITATIONS
217	Genomic landscapes by multiregion sequencing combined with circulation tumor DNA detection contribute to molecular diagnosis in glioblastomas. Aging, 2019, 11, 11224-11243.	1.4	6
218	Radiosensitivity of glioma to Gamma Knife treatment enhanced in vitro and in vivo by RNA interfering Ku70 that is mediated by a recombinant adenovirus. Journal of Neurosurgery, 2010, 113, 228-235.	0.9	6
219	Combination therapy with Gamma Knife radiosurgery and antisense EGFR for malignant glioma in vitro and orthotopic xenografts. Oncology Reports, 2010, 23, 1585-91.	1.2	5
220	F25P preproinsulin abrogates the secretion of pro-growth factors from EGFRvIII cells and suppresses tumor growth in an EGFRvIII/wt heterogenic model. Cancer Letters, 2016, 380, 1-9.	3.2	5
221	Systemic delivery of microRNA for treatment of brain ischemia. Nano Research, 2021, 14, 3319-3328.	5.8	5
222	Effects of Gamma Knife surgery on C6 glioma in combination with adenoviral p53 in vitro and in vivo. Journal of Neurosurgery, 2006, 105, 208-213.	0.9	5
223	Role of the AKT pathway in microRNA expression of human U251 glioblastoma cells. International Journal of Oncology, 2010, 36, 665-72.	1.4	5
224	Engineering Lipusu by lysophosphatidylcholine for improved tumor cellular uptake and anticancer efficacy. Journal of Materials Chemistry B, 2022, , .	2.9	5
225	IncRNA PRADX is a Mesenchymal Glioblastoma Biomarker for Cellular Metabolism Targeted Therapy. Frontiers in Oncology, 2022, 12, 888922.	1.3	5
226	Extracellular Delivery: Tumor Microenvironmentâ€Tailored Weakly Cellâ€Interacted Extracellular Delivery Platform Enables Precise Antibody Release and Function (Adv. Funct. Mater. 43/2019). Advanced Functional Materials, 2019, 29, 1970301.	7.8	4
227	TCFβ signaling-induced miRNA participates in autophagic regulation by targeting PRAS40 in mesenchymal subtype of glioblastoma. Cancer Biology and Medicine, 2020, 17, 664-675.	1.4	4
228	Premature MicroRNA-Based Therapeutic: A "One-Two Punch―against Cancers. Cancers, 2020, 12, 3831.	1.7	3
229	Boosting of the enhanced permeability and retention effect with nanocapsules improves the therapeutic effects of cetuximab. Cancer Biology and Medicine, 2020, 17, 433-443.	1.4	3
230	MicroRNA and brain tumors. Chinese Journal of Clinical Oncology, 2007, 4, 355-359.	0.0	2
231	A study of the relationship between the Wnt/β-catenin signaling pathway and the gastrointestinal development of rat embryonic and perinatal periods. Experimental and Therapeutic Medicine, 2013, 5, 1598-1602.	0.8	2
232	Effects of combined radiosurgery and temozolomide therapy on epidermal growth factor receptor and variant III in glioblastoma multiforme. Oncology Letters, 2018, 15, 5751-5759.	0.8	2
233	Silencing Epidermal Growth Factor Receptor by RNA Interference in Glioma. Methods in Molecular Biology, 2009, 542, 335-349	0.4	2
234	Suppression of Akt1 expression by small interference RNA inhibits SGC7901 cell growth in vitro and in vivo. Oncology Reports, 2009, 22, 1305-13.	1.2	1

#	Article	IF	CITATIONS
235	AKT1 and AKT2 promote malignant transformation in human brain glioma LN229 cells. Clinical Oncology and Cancer Research, 2011, 8, 144-148.	0.1	1
236	Corrigendum to "miR-137 is frequently down-regulated in glioblastoma and is a negative regulator of Cox-2―[Eur J Cancer 48(16) (2012) 3104–3111]. European Journal of Cancer, 2013, 49, 3384.	1.3	1
237	Low expression of PTEN is essential for maintenance of a malignant state in human gastric adenocarcinoma via upregulation of pâ€AURKA mediated by activation of AURKA. International Journal of Molecular Medicine, 2018, 41, 3629-3641.	1.8	1
238	Abstract 235: SNORD76, a box C/D snoRNA, acts as a tumor suppressor in glioblastoma. , 2015, , .		1
239	Abstract 3962: Knocked down miR-221/222 inhibits Akt pathway to suppress malignant glioma cell growth independent of PTEN status. , 2011, , .		1
240	Abstract 145: MicroRNA-23b Expression is Regulated by VHL and effects on Glioma Cell survival and invasion. , 2012, , .		1
241	Suppression of glioma-cell survival by antisense and dominant-negative AKT2 RNA. Chinese Journal of Clinical Oncology, 2005, 2, 609-614.	0.0	0
242	PAMAM Dendrimer as Potential Delivery System for Combined Chemotherapeutic and MicroRNA-21 Gene Therapy. , 2011, , .		0
243	EXTH-08. MESENCHYMAL GLIOBLASTOMA CONSTITUTES A MAJOR ceRNA SIGNATURE IN THE TGF-PATHWAY. Neuro-Oncology, 2018, 20, vi86-vi86.	0.6	Ο
244	Crispr Library Screening: Genomeâ€Wide CRISPRâ€Cas9 Screening Identifies NFâ€₽̂B/E2F6 Responsible for EGFRvIIIâ€Associated Temozolomide Resistance in Glioblastoma (Adv. Sci. 17/2019). Advanced Science, 2019, 6, 1970103.	5.6	0
245	Collateral Effects: The CRISPRâ€Cas13a Geneâ€Editing System Induces Collateral Cleavage of RNA in Glioma Cells (Adv. Sci. 20/2019). Advanced Science, 2019, 6, 1970124.	5.6	0
246	Brain Tumor Therapy: Systemic Delivery of Monoclonal Antibodies to the Central Nervous System for Brain Tumor Therapy (Adv. Mater. 19/2019). Advanced Materials, 2019, 31, 1970138.	11.1	0
247	Editorial: The State-of-Art in Immuno-Oncology, What to Do With Glioblastoma?. Frontiers in Immunology, 2021, 12, 788733.	2.2	Ο
248	Abstract 5003: \hat{I}^2 -catenin regulates multiple oncogenes in glioma. , 2011, , .		0
249	Abstract 3973: MiR-21 modulates hTERT through a STAT3-dependent manner on glioblastoma cell growth. , 2011, , .		0
250	Role of MicroRNA in Glioma. , 2012, , 87-93.		0
251	Abstract 776: Sensitization of glioblastoma cells to temozolomide induced antitumor effect by PLGA-aspirin microsphere through modulation of \hat{l}^2 -catenin transactivation. , 2012, , .		0
252	Abstract 1561: AJAP1 is dysregulated at an early stage of gliomagenesis and suppresses invasion through cytoskeleton reorganization. , 2014, , .		0

#	Article	IF	CITATIONS
253	Abstract 3541: HOTAIR modulates \hat{l}^2 -catenin signaling pathway through NLK and NFAT5 in human glioblastoma. , 2014, , .		0
254	Abstract 997: Hotair promotes glioma cell cycle through a b-catenin mediated mRNA network. , 2016, , .		0
255	Abstract 987: A novel cell cycle-associated lncRNA, HOXA11-AS, is transcribed from 5-prime end of HOXA transcript and a biomarker of progression in glioma. , 2016, , .		0
256	Abstract 1246: Comprehensive RNA interference induced by CRISPR/Cas13a gene editing system in human cancer cells. , 2019, , .		0