Richard Dyck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3953947/publications.pdf

Version: 2024-02-01

83 papers 3,776 citations

33 h-index 59 g-index

91 all docs 91 docs citations

91 times ranked 4674 citing authors

#	Article	IF	CITATIONS
1	Lack of Vesicular Zinc Does Not Affect the Behavioral Phenotype of Polyinosinic:Polycytidylic Acid-Induced Maternal Immune Activation Mice. Frontiers in Behavioral Neuroscience, 2022, 16, 769322.	1.0	1
2	Effects of enriched housing on the neuronal morphology of mice that lack zinc transporter 3 (ZnT3) and vesicular zinc. Behavioural Brain Research, 2020, 379, 112336.	1.2	5
3	Effects of social defeat stress and fluoxetine treatment on neurogenesis and behavior in mice that lack zinc transporter 3 (ZnT3) and vesicular zinc. Hippocampus, 2020, 30, 623-637.	0.9	12
4	Brain-derived Neurotrophic Factor and TrkB Levels in Mice that Lack Vesicular Zinc: Effects of Age and Sex. Neuroscience, 2020, 425, 90-100.	1.1	3
5	Examination of Zinc in the Circadian System. Neuroscience, 2020, 432, 15-29.	1.1	2
6	Signaling by Synaptic Zinc is Required for Whisker-Mediated, Fine Texture Discrimination. Neuroscience, 2018, 369, 242-247.	1.1	27
7	Behavior of Adult 5-HT1A Receptor Knockout Mice Exposed to Stress During Prenatal Development. Neuroscience, 2018, 371, 16-28.	1.1	8
8	Elimination of vesicular zinc alters the behavioural and neuroanatomical effects of social defeat stress in mice. Neurobiology of Stress, 2018, 9, 199-213.	1.9	14
9	Behavioral characterization of female zinc transporter 3 (ZnT3) knockout mice. Behavioural Brain Research, 2017, 321, 36-49.	1.2	25
10	Behavioural outcomes of adult female offspring following maternal stress and perinatal fluoxetine exposure. Behavioural Brain Research, 2017, 331, 84-91.	1.2	24
11	Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neuroscience and Biobehavioral Reviews, 2017, 80, 329-350.	2.9	122
12	<i>Neurog2</i> and <i>Ascl1</i> together regulate a postmitotic derepression circuit to govern laminar fate specification in the murine neocortex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4934-E4943.	3.3	34
13	Circadian behavior of adult mice exposed to stress and fluoxetine during development. Psychopharmacology, 2017, 234, 793-804.	1.5	17
14	A new role for zinc in the brain. ELife, 2017, 6, .	2.8	11
15	Effects of maternal stress and perinatal fluoxetine exposure on behavioral outcomes of adult male offspring. Neuroscience, 2016, 320, 281-296.	1.1	57
16	Mice lacking the transcription factor SHOX2 display impaired cerebellar development and deficits in motor coordination. Developmental Biology, 2015, 399, 54-67.	0.9	18
17	The effects of chronic fluoxetine treatment following injury of medial frontal cortex in mice. Behavioural Brain Research, 2015, 290, 102-116.	1.2	13
18	Predictors of caregiver depression and family functioning after perinatal stroke. BMC Pediatrics, 2015, 15, 75.	0.7	49

#	Article	IF	Citations
19	Effects of lighting condition on circadian behavior in 5-HT1A receptor knockout mice. Physiology and Behavior, 2015, 139, 136-144.	1.0	11
20	Increased Aggression, Improved Spatial Memory, and Reduced Anxiety-Like Behaviour in Adult Male Mice Exposed to Fluoxetine Early in Life. Developmental Neuroscience, 2014, 36, 396-408.	1.0	47
21	Parent and family impact of raising a child with perinatal stroke. BMC Pediatrics, 2014, 14, 182.	0.7	48
22	Survival of Adult Generated Hippocampal Neurons Is Altered in Circadian Arrhythmic Mice. PLoS ONE, 2014, 9, e99527.	1.1	32
23	The effects of perinatal fluoxetine treatment on the circadian system of the adult mouse. Psychopharmacology, 2013, 225, 743-751.	1.5	16
24	Long-Term Outcomes of Developmental Exposure to Fluoxetine: A Review of the Animal Literature. Developmental Neuroscience, 2013, 35, 437-449.	1.0	44
25	Novel, whisker-dependent texture discrimination task for mice. Behavioural Brain Research, 2013, 237, 238-242.	1.2	60
26	Bi-Parental Care Contributes to Sexually Dimorphic Neural Cell Genesis in the Adult Mammalian Brain. PLoS ONE, 2013, 8, e62701.	1.1	8
27	Behavioural outcomes of perinatal maternal fluoxetine treatment. Neuroscience, 2012, 226, 356-366.	1.1	58
28	Object/Context Specific Memory Deficits following Medial Frontal Cortex Damage in Mice. PLoS ONE, 2012, 7, e43698.	1.1	32
29	Alterations in protein and gene expression within the barrel cortices of ZnT3 knockout mice: Experience-independent and dependent changes. Neurochemistry International, 2011, 59, 860-870.	1.9	11
30	M-M-101 EARLY CIRCADIAN ABNORMALITIES AND NEUROPEPTIDE DEGENERATION WITHIN THE CIRCADIAN PACEMAKER ARE PREDICTIVE OF FUTURE ALZHEIMER'S DISEASE PATHOLOGY. Sleep Medicine, 2011, 12, S49.	0.8	0
31	Larger cortical motor maps after seizures. European Journal of Neuroscience, 2011, 34, 615-621.	1.2	11
32	Characterization of the 3xTg-AD mouse model of Alzheimer's disease: Part 1. Circadian changes. Brain Research, 2010, 1348, 139-148.	1.1	161
33	Characterization of the 3xTg-AD mouse model of Alzheimer's disease: Part 2. Behavioral and cognitive changes. Brain Research, 2010, 1348, 149-155.	1.1	182
34	Experience-dependent regulation of vesicular zinc in male and female 3xTg-AD mice. Neurobiology of Aging, 2010, 31, 605-613.	1.5	14
35	Dynamic, experience-dependent modulation of synaptic zinc within the excitatory synapses of the mouse barrel cortex. Neuroscience, 2010, 170, 1015-1019.	1.1	17
36	Neonatal Medial Frontal Cortex Lesions Disrupt Circadian Activity Patterns. Developmental Neuroscience, 2009, 31, 412-419.	1.0	3

3

#	Article	IF	Citations
37	Zinc and cortical plasticity. Brain Research Reviews, 2009, 59, 347-373.	9.1	162
38	Differential Progression of Magnetization Transfer Imaging Changes Depending on Severity of Cerebral Hypoxic-Ischemic Injury. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1613-1623.	2.4	5
39	Syntaxin 1A is required for normal in utero development. Biochemical and Biophysical Research Communications, 2008, 375, 372-377.	1.0	14
40	Enhanced Plasticity in Zincergic, Cortical Circuits after Exposure to Enriched Environments. Journal of Neuroscience, 2008, 28, 13995-13999.	1.7	13
41	Proteinase-Activated Receptor-2 Exerts Protective and Pathogenic Cell Type-Specific Effects in Alzheimer's Disease. Journal of Immunology, 2007, 179, 5493-5503.	0.4	53
42	Zincergic innervation of the forebrain distinguishes epilepsy-prone from epilepsy-resistant rat strains. Neuroscience, 2007, 144, 1409-1414.	1.1	11
43	The Role of Zinc in Cerebral Ischemia. Molecular Medicine, 2007, 13, 380-387.	1.9	81
44	Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15242-15247.	3.3	129
45	Retrograde tracing of the subset of afferent connections in mouse barrel cortex provided by zincergic neurons. Journal of Comparative Neurology, 2005, 486, 48-60.	0.9	21
46	Induction of Reproducible Focal Ischemic Lesions in Neonatal Mice by Photothrombosis. Developmental Neuroscience, 2005, 27, 121-126.	1.0	30
47	Disrupted tonotopy of the auditory cortex in mice lacking M1 muscarinic acetylcholine receptor. Hearing Research, 2005, 201, 145-155.	0.9	40
48	Heterogeneity among hippocampal pyramidal neurons revealed by their relation to theta-band oscillation and synchrony. Experimental Neurology, 2005, 195, 458-474.	2.0	29
49	Modulation of synaptic zinc in barrel cortex by whisker stimulation. Neuroscience, 2005, 134, 355-359.	1.1	27
50	Efficacy and Safety Evaluation of Human Reovirus Type 3 in Immunocompetent Animals. Clinical Cancer Research, 2004, 10, 8561-8576.	3.2	78
51	The neuregulin receptor, ErbB4, is not required for normal development and adult maintenance of the substantia nigra pars compacta. Journal of Neurochemistry, 2004, 91, 1302-1311.	2.1	44
52	Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO Journal, 2004, 23, 2892-2902.	3.5	355
53	Reovirus as an experimental therapeutic for brain and leptomeningeal metastases from breast cancer. Gene Therapy, 2004, 11, 1579-1589.	2.3	45
54	Distribution of zincergic neurons in the mouse forebrain. Journal of Comparative Neurology, 2004, 479, 156-167.	0.9	65

#	Article	IF	CITATIONS
55	MAOA knockout mice are more susceptible to seizures but show reduced epileptogenesis. Epilepsy Research, 2004, 59, 25-34.	0.8	14
56	Vibrissae., 2004,, 81-89.		3
57	Antigenic compartmentation of the cat cerebellar cortex. Brain Research, 2003, 977, 1-15.	1.1	31
58	Altered zincergic innervation of the developing primary somatosensory cortex in monoamine oxidase-A knockout mice. Developmental Brain Research, 2003, 142, 19-29.	2.1	15
59	Developmental distribution of calretinin in mouse barrel cortex. Developmental Brain Research, 2003, 143, 111-114.	2.1	11
60	Intracellular recording and labeling of neurons in midline structures of the rat brain in vivo using sharp electrodes. Journal of Neuroscience Methods, 2003, 127, 85-93.	1.3	12
61	An improved method for visualizing the cell bodies of zincergic neurons. Journal of Neuroscience Methods, 2003, 129, 41-47.	1.3	13
62	Experience-dependent regulation of synaptic zinc is impaired in the cortex of aged mice. Neuroscience, 2003, 119, 795-801.	1.1	27
63	Experience-dependent Regulation of the Zincergic Innervation of Visual Cortex in Adult Monkeys. Cerebral Cortex, 2003, 13, 1094-1109.	1.6	32
64	Cloning and Cortical Expression of Rat Emx2 and Adenovirus-mediated Overexpression to Assess its Regulation of Area-specific Targeting of Thalamocortical Axons. Cerebral Cortex, 2003, 13, 648-660.	1.6	21
65	Enhanced epileptogenesis in S100B knockout mice. Molecular Brain Research, 2002, 106, 22-29.	2.5	49
66	Rapid, Experience-Dependent Changes in Levels of Synaptic Zinc in Primary Somatosensory Cortex of the Adult Mouse. Journal of Neuroscience, 2002, 22, 2617-2625.	1.7	60
67	Relationship Between Membrane Potential Oscillations and Rhythmic Discharges in Identified Hippocampal Theta-Related Cells. Journal of Neurophysiology, 2002, 88, 3046-3066.	0.9	42
68	The Dalila effect: C57BL6 mice barber whiskers by plucking. Behavioural Brain Research, 2000, 108, 39-45.	1.2	116
69	Columnar distribution of serotonin-dependent plasticity within kitten striate cortex. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1841-1844.	3.3	62
70	Generation and Analysis of GluR5 (Q636R) Kainate Receptor Mutant Mice. Journal of Neuroscience, 1999, 19, 8757-8764.	1.7	68
71	Effects of tetrodotoxin treatment in LGN on neuromodulatory receptor expression in developing visual cortex. Developmental Brain Research, 1998, 106, 93-99.	2.1	5
72	The correlation between cortical neuron maturation and neurofilament phosphorylation: a developmental study of phosphorylated 200 kDa neurofilament protein in cat visual cortex. Developmental Brain Research, 1994, 81, 151-161.	2.1	26

#	Article	IF	CITATIONS
73	Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Current Opinion in Neurobiology, 1994, 4, 535-544.	2.0	161
74	Histochemical localization of synaptic zinc in the developing cat visual cortex. Journal of Comparative Neurology, 1993, 329, 53-67.	0.9	60
75	Immunohistochemical localization of the S- 100^2 protein in postnatal cat visual cortex: spatial and temporal patterns of expression in cortical and subcortical glia. Developmental Brain Research, 1993, 72, 181-192.	2.1	65
76	An interdigitated columnar mosaic of cytochrome oxidase, zinc, and neurotransmitter-related molecules in cat and monkey visual cortex Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9066-9069.	3.3	58
77	Autoradiographic localization of serotonin receptor subtypes in cat visual cortex: transient regional, laminar, and columnar distributions during postnatal development. Journal of Neuroscience, 1993, 13, 4316-4338.	1.7	81
78	Enrichment of glutamate in zinc-containing terminals of the cat visual cortex. NeuroReport, 1992, 3, 861-864.	0.6	131
79	Sparing of two types of hippocampal rhythmical slow activity (RSA, theta) in adult rats decorticated neonatally. Brain Research Bulletin, 1991, 26, 425-427.	1.4	3
80	Increased cytochrome oxidase activity of mesencephalic neurons in developing rats displaying methylmercury-induced movement and postural disorders. Neuroscience Letters, 1988, 89, 271-276.	1.0	4
81	Place navigation by rats in a swimming pool Canadian Journal of Psychology, 1984, 38, 322-347.	0.8	188
82	Comparative potency of tactile, auditory, and visual stimulus repetition in eliciting activated forebrain EEG in the rabbit Behavioral Neuroscience, 1984, 98, 333-344.	0.6	13
83	Comparative potency of tactile, auditory, and visual stimulus repetition in eliciting activated forebrain EEG in the rabbit. Behavioral Neuroscience, 1984, 98, 333-44.	0.6	6