Jianping Xie

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3953826/jianping-xie-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24,637 82 362 149 h-index g-index citations papers 28,253 8.2 385 7.58 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
362	Enhancing catalytic properties of ligand-protected gold-based 25-metal atom nanoclusters by silver doping. <i>Molecular Catalysis</i> , 2022 , 518, 112095	3.3	O
361	Cucurbit[]uril Supramolecular Assemblies-Regulated Charge Transfer for Luminescence Switching of Gold Nanoclusters <i>Journal of Physical Chemistry Letters</i> , 2022 , 419-426	6.4	2
360	Insertion Mutation of Play an Important Role in Resistance of to Mycobacteriophage SWU1 <i>Infection and Drug Resistance</i> , 2022 , 15, 347-357	4.2	
359	Phosphoproteomics of Mycobacterium-host interaction and inspirations for novel measures against tuberculosis <i>Cellular Signalling</i> , 2022 , 91, 110238	4.9	1
358	Atomic-precision Pt nanoclusters for enhanced hydrogen electro-oxidation <i>Nature Communications</i> , 2022 , 13, 1596	17.4	8
357	Role of ISG15 post-translational modification in immunity against Mycobacterium tuberculosis infection <i>Cellular Signalling</i> , 2022 , 110329	4.9	
356	AIE-type Luminescent Metal Nanoclusters 2022 , 411-441		
355	Diversity and Function of Wolf Spider Gut Microbiota Revealed by Shotgun Metagenomics <i>Frontiers in Microbiology</i> , 2021 , 12, 758794	5.7	
354	Selected rhizosphere bacteria are associated with endangered species - Scutellaria tsinyunensis via comparative microbiome analysis <i>Microbiological Research</i> , 2021 , 258, 126917	5.3	1
353	Cytokine storm in tuberculosis and IL-6 involvement. <i>Infection, Genetics and Evolution</i> , 2021 , 105166	4.5	0
352	All Hydroxyl-Thiol-Protected Gold Nanoclusters with Near-Neutral Surface Charge. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 9882-9887	6.4	1
351	Bright Future of Gold Nanoclusters in Theranostics. <i>ACS Applied Materials & Discourse (Control of Section 2021)</i> , 13, 49581-49588	9.5	9
350	Interactions of Metal Nanoclusters with Light: Fundamentals and Applications. <i>Advanced Materials</i> , 2021 , e2103918	24	11
349	Diversification of Metallic Molecules through Derivatization Chemistry of Au Nanoclusters. <i>Accounts of Chemical Research</i> , 2021 , 54, 4142-4153	24.3	5
348	Ultrastable Hydrophilic Gold Nanoclusters Protected by Sulfonic Thiolate Ligands. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 489-497	3.8	2
347	interferes with host lipid metabolism via -mediated suppression to block autophagy-dependent inhibition of infection. <i>Autophagy</i> , 2021 , 17, 1918-1933	10.2	2
346	Mycobacterium tuberculosis Rv1515c antigen enhances survival of M. smegmatis within macrophages by disrupting the host defence. <i>Microbial Pathogenesis</i> , 2021 , 153, 104778	3.8	1

(2021-2021)

345	Traceable Nanocluster-Prodrug Conjugate for Chemo-photodynamic Combinatorial Therapy of Non-small Cell Lung Cancer <i>ACS Applied Bio Materials</i> , 2021 , 4, 3232-3245	4.1	2
344	Mycobacterium tuberculosis PPE10 (Rv0442c) alters host cell apoptosis and cytokine profile via linear ubiquitin chain assembly complex HOIP-NF-B signaling axis. <i>International Immunopharmacology</i> , 2021 , 94, 107363	5.8	5
343	Revealing the etching process of water-soluble Au nanoclusters at the molecular level. <i>Nature Communications</i> , 2021 , 12, 3212	17.4	8
342	The role of Mfd in Mycobacterium tuberculosis physiology and underlying regulatory network. <i>Microbiological Research</i> , 2021 , 246, 126718	5.3	1
341	Mycobacterium tuberculosis effector PPE36 attenuates host cytokine storm damage via inhibiting macrophage M1 polarization. <i>Journal of Cellular Physiology</i> , 2021 , 236, 7405-7420	7	1
340	Tauroursodeoxycholic acid prevents Burkholderia pseudomallei-induced endoplasmic reticulum stress and is protective during melioidosis in mice. <i>BMC Microbiology</i> , 2021 , 21, 137	4.5	
339	Confined Unimolecular Micelles for Precisely Controlled In Situ Synthesis of Stable Ultrasmall Metal Nanocluster Assemblies. <i>Chemistry of Materials</i> , 2021 , 33, 5067-5075	9.6	6
338	The Evaluation and Validation of Blood-Derived Novel Biomarkers for Precise and Rapid Diagnosis of Tuberculosis in Areas With High-TB Burden. <i>Frontiers in Microbiology</i> , 2021 , 12, 650567	5.7	2
337	Mycobacterium Lrp/AsnC family transcriptional factor modulates the arginase pathway as both a sensor and a transcriptional repressor. <i>Journal of Genetics and Genomics</i> , 2021 , 48, 1020-1031	4	O
336	The frequency and dynamics of CD4 mucosal-associated invariant T (MAIT) cells in active pulmonary tuberculosis. <i>Cellular Immunology</i> , 2021 , 365, 104381	4.4	
335	Differential DNA methylomes of clinical MDR, XDR and XXDR isolates revealed by using single-molecule real-time sequencing. <i>Journal of Drug Targeting</i> , 2021 , 29, 69-77	5.4	1
334	Mycobacterium tuberculosis Raf kinase inhibitor protein (RKIP) Rv2140c is involved in cell wall arabinogalactan biosynthesis via phosphorylation. <i>Microbiological Research</i> , 2021 , 242, 126615	5.3	2
333	A New Class of NIR-II Gold Nanocluster-Based Protein Biolabels for In Vivo Tumor-Targeted Imaging. <i>Angewandte Chemie</i> , 2021 , 133, 1326-1332	3.6	5
332	Toward greener synthesis of gold nanomaterials: From biological to biomimetic synthesis. <i>Coordination Chemistry Reviews</i> , 2021 , 426, 213540	23.2	25
331	Overcoming bacterial physical defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. <i>Bioactive Materials</i> , 2021 , 6, 941-950	16.7	28
330	Mycobacterial ethambutol responsive genes and implications in antibiotics resistance. <i>Journal of Drug Targeting</i> , 2021 , 29, 284-293	5.4	4
329	Observing antimicrobial process with traceable gold nanoclusters. <i>Nano Research</i> , 2021 , 14, 1026-1033	10	17
328	Mycobacteriophage SWU1-Functionalized magnetic particles for facile bioluminescent detection of Mycobacterium smegmatis. <i>Analytica Chimica Acta</i> , 2021 , 1145, 17-25	6.6	2

327	Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent advances in catalysis and biomedical applications. <i>Nano Today</i> , 2021 , 36, 101053	17.9	36
326	Differential Isoniazid Response Pattern Between Active and Dormant. <i>Microbial Drug Resistance</i> , 2021 , 27, 768-775	2.9	1
325	Genomic and proteomic portrait of a novel mycobacteriophage SWU2 isolated from China. <i>Infection, Genetics and Evolution</i> , 2021 , 87, 104665	4.5	
324	Aggregation-induced emission in luminescent metal nanoclusters. <i>National Science Review</i> , 2021 , 8, nwa	a a 208	35
323	A New Class of NIR-II Gold Nanocluster-Based Protein Biolabels for In Vivo Tumor-Targeted Imaging. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 1306-1312	16.4	54
322	Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. <i>Aggregate</i> , 2021 , 2, 114-132	22.9	47
321	Electrocatalysis of gold-based nanoparticles and nanoclusters. <i>Materials Horizons</i> , 2021 , 8, 1657-1682	14.4	9
320	High-Yield Synthesis of AIE-Type Au22(SG)18 Nanoclusters through Precursor Engineering and Its pH-Dependent Size Transformation. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 4066-4076	3.8	5
319	Rv0580c Impedes the Intracellular Survival of Recombinant Mycobacteria, Manipulates the Cytokines, and Induces ER Stress and Apoptosis in Host Macrophages via NF- B and p38/JNK Signaling. <i>Pathogens</i> , 2021 , 10,	4.5	2
318	Insight into the emerging role of SARS-CoV-2 nonstructural and accessory proteins in modulation of multiple mechanisms of host innate defense. <i>Bosnian Journal of Basic Medical Sciences</i> , 2021 , 21, 515	- 3 27	1
317	Reversible isomerization of metal nanoclusters induced by intermolecular interaction. <i>CheM</i> , 2021 , 7, 2227-2244	16.2	9
316	Shining photocatalysis by gold-based nanomaterials. <i>Nano Energy</i> , 2021 , 88, 106306	17.1	18
315	Mycobacterium tuberculosis RKIP (Rv2140c) dephosphorylates ERK/NF- B upstream signaling molecules to subvert macrophage innate immune response. <i>Infection, Genetics and Evolution</i> , 2021 , 94, 105019	4.5	
314	Mycobacterium tuberculosis PE17 (Rv1646) promotes host cell apoptosis via host chromatin remodeling mediated by reduced H3K9me3 occupancy. <i>Microbial Pathogenesis</i> , 2021 , 159, 105147	3.8	0
313	Ligand Design in Ligand-Protected Gold Nanoclusters. <i>Small</i> , 2021 , 17, e2004381	11	32
312	Multiscale Assembly of [AgS] Tetrahedrons into Hierarchical Ag-S Networks for Robust Photonic Water. <i>Advanced Materials</i> , 2021 , 33, e2006459	24	5
311	Surface Engineering Assisted Size and Structure Modulation of Gold Nanoclusters by Ionic Liquid Cations <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	2
310	Methylation in Mycobacterium-host interaction and implications for novel control measures. <i>Infection, Genetics and Evolution</i> , 2020 , 83, 104350	4.5	3

(2020-2020)

309	Rv0341 Promotes Survival in In Vitro Hostile Environments and within Macrophages and Induces Cytokines Expression. <i>Pathogens</i> , 2020 , 9,	4.5	2
308	Mycobacterium tuberculosis Rv3717 enhances the survival of Mycolicibacterium smegmatis by inhibiting host innate immune and caspase-dependent apoptosis. <i>Infection, Genetics and Evolution</i> , 2020 , 84, 104412	4.5	3
307	The in situ synthesis of silver nanoclusters inside a bacterial cellulose hydrogel for antibacterial applications. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 4846-4850	7.3	18
306	L-lysine potentiates aminoglycosides against via regulation of proton motive force and antibiotics uptake. <i>Emerging Microbes and Infections</i> , 2020 , 9, 639-650	18.9	8
305	Unraveling the Impact of Gold(I)Thiolate Motifs on the Aggregation-Induced Emission of Gold Nanoclusters. <i>Angewandte Chemie</i> , 2020 , 132, 10020-10025	3.6	14
304	Increasing the Potential Interacting Area of Nanomedicine Enhances Its Homotypic Cancer Targeting Efficacy. <i>ACS Nano</i> , 2020 , 14, 3259-3271	16.7	46
303	L-Alanine specifically potentiates fluoroquinolone efficacy against Mycobacterium persisters via increased intracellular reactive oxygen species. <i>Applied Microbiology and Biotechnology</i> , 2020 , 104, 2137	-2747	1
302	Unraveling the Impact of Gold(I)-Thiolate Motifs on the Aggregation-Induced Emission of Gold Nanoclusters. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9934-9939	16.4	111
301	Supported Atomically-Precise Gold Nanoclusters for Enhanced Flow-through Electro-Fenton. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	59
300	PE31 () Attenuates Host Cell Apoptosis and Promotes Recombinant Intracellular Survival via Up-regulating GTPase Guanylate Binding Protein-1. <i>Frontiers in Cellular and Infection Microbiology</i> , 2020 , 10, 40	5.9	6
299	Transport mechanism of Mycobacterium tuberculosis MmpL/S family proteins and implications in pharmaceutical targeting. <i>Biological Chemistry</i> , 2020 , 401, 331-348	4.5	7
298	Ligand-protected atomically precise gold nanoclusters as model catalysts for oxidation reactions. <i>Chemical Communications</i> , 2020 , 56, 1163-1174	5.8	32
297	Reactive oxygen species play a dominant role in all pathways of rapid quinolone-mediated killing. Journal of Antimicrobial Chemotherapy, 2020 , 75, 576-585	5.1	15
296	Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity. <i>Nano Research</i> , 2020 , 13, 203-208	10	28
295	Identification of Potential Biomarkers and Related Transcription Factors in Peripheral Blood of Tuberculosis Patients. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	2
294	Studying the Growth of Gold Nanoclusters by Sub-stoichiometric Reduction. <i>Cell Reports Physical Science</i> , 2020 , 1, 100206	6.1	3
293	Engineering Ultrasmall Metal Nanoclusters as Promising Theranostic Agents. <i>Trends in Chemistry</i> , 2020 , 2, 665-679	14.8	56
292	Interfacial engineering of gold nanoclusters for biomedical applications. <i>Materials Horizons</i> , 2020 , 7, 2596-2618	14.4	50

291	Engineering Noble Metal Nanomaterials for Pollutant Decomposition. <i>Industrial & amp; Engineering Chemistry Research</i> , 2020 , 59, 20561-20581	3.9	22
290	Global quantitative phosphoproteome reveals phosphorylation network of bovine lung tissue altered by Mycobacterium bovis. <i>Microbial Pathogenesis</i> , 2020 , 147, 104402	3.8	O
289	Composition-Dependent Antimicrobial Ability of Full-Spectrum AuAg Alloy Nanoclusters. <i>ACS Nano</i> , 2020 , 14, 11533-11541	16.7	32
288	Establishing empirical design rules of nucleic acid templates for the synthesis of silver nanoclusters with tunable photoluminescence and functionalities towards targeted bioimaging applications. Nanoscale Advances, 2020, 2, 3921-3932	5.1	11
287	Control of single-ligand chemistry on thiolated Au nanoclusters. <i>Nature Communications</i> , 2020 , 11, 5498	317.4	23
286	Cancer Biomarker-Triggered Disintegrable DNA Nanogels for Intelligent Drug Delivery. <i>Nano Letters</i> , 2020 , 20, 8399-8407	11.5	10
285	Synergistic Antimicrobial Titanium Carbide (MXene) Conjugated with Gold Nanoclusters. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2001007	10.1	23
284	Von Willebrand factor protein MSMEG_3641 is involved in biofilm formation and intracellular survival. <i>Future Microbiology</i> , 2020 , 15, 1033-1044	2.9	O
283	Clusterization-triggered emission: Uncommon luminescence from common materials. <i>Materials Today</i> , 2020 , 32, 275-292	21.8	206
282	Mycobacterium tuberculosis Rv0426c promotes recombinant mycobacteria intracellular survival via manipulating host inflammatory cytokines and suppressing cell apoptosis. <i>Infection, Genetics and Evolution</i> , 2020 , 77, 104070	4.5	6
281	is involved in pyrazinamide and fluoroquinolones susceptibility via NAD/NADH dysregulation. <i>Future Microbiology</i> , 2020 , 15, 413-426	2.9	
280	Molecular reactivity of thiolate-protected noble metal nanoclusters: synthesis, self-assembly, and applications. <i>Chemical Science</i> , 2020 , 12, 99-127	9.4	40
279	Synergistic Antimicrobial Capability of Magnetically Oriented Graphene Oxide Conjugated with Gold Nanoclusters. <i>Advanced Functional Materials</i> , 2019 , 29, 1904603	15.6	25
278	Water-soluble metal nanoclusters: recent advances in molecular-level exploration and biomedical applications. <i>Dalton Transactions</i> , 2019 , 48, 10385-10392	4.3	20
277	Deep Learning Accelerated Gold Nanocluster Synthesis. <i>Advanced Intelligent Systems</i> , 2019 , 1, 1900029	6	30
276	A perspective of chalcogenide semiconductor-noble metal nanocomposites through structural transformations. <i>Nano Materials Science</i> , 2019 , 1, 184-197	10.2	5
275	Mycobacterium tuberculosis Rv0191 is an efflux pump of major facilitator superfamily transporter regulated by Rv1353c. <i>Archives of Biochemistry and Biophysics</i> , 2019 , 667, 59-66	4.1	4
274	Biology of MarR family transcription factors and implications for targets of antibiotics against tuberculosis. <i>Journal of Cellular Physiology</i> , 2019 , 234, 19237-19248	7	7

273	Aurophilic Interactions in the Self-Assembly of Gold Nanoclusters into Nanoribbons with Enhanced Luminescence. <i>Angewandte Chemie</i> , 2019 , 131, 8223-8228	3.6	22
272	Role of two-component regulatory systems in intracellular survival of Mycobacterium tuberculosis. Journal of Cellular Biochemistry, 2019 , 120, 12197-12207	4.7	4
271	Electrospray Ionization Mass Spectrometry: A Powerful Platform for Noble-Metal Nanocluster Analysis. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11967-11977	16.4	83
270	Aurophilic Interactions in the Self-Assembly of Gold Nanoclusters into Nanoribbons with Enhanced Luminescence. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8139-8144	16.4	128
269	Electrospray Ionization Mass Spectrometry: A Powerful Platform for Noble-Metal Nanocluster Analysis. <i>Angewandte Chemie</i> , 2019 , 131, 12093-12103	3.6	11
268	PE_PGRS62 promotes the survival of Mycobacterium smegmatis within macrophages via disrupting ER stress-mediated apoptosis. <i>Journal of Cellular Physiology</i> , 2019 , 234, 19774-19784	7	7
267	(Rv3340) derived hydrogen sulphide conferring bacteria stress survival. <i>Journal of Drug Targeting</i> , 2019 , 27, 1004-1016	5.4	10
266	Antimicrobial Thin-Film Composite Membranes with Chemically Decorated Ultrasmall Silver Nanoclusters. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 14848-14855	8.3	11
265	Directed Self-Assembly of Ultrasmall Metal Nanoclusters 2019 , 1, 237-248		71
264	Atomic-Precision Gold Clusters for NIR-II Imaging. <i>Advanced Materials</i> , 2019 , 31, e1901015	24	149
264	Atomic-Precision Gold Clusters for NIR-II Imaging. <i>Advanced Materials</i> , 2019 , 31, e1901015 Real Time Monitoring of the Dynamic Intracluster Diffusion of Single Gold Atoms into Silver Nanoclusters. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18977-18983	24 16.4	149 48
	Real Time Monitoring of the Dynamic Intracluster Diffusion of Single Gold Atoms into Silver	•	
263	Real Time Monitoring of the Dynamic Intracluster Diffusion of Single Gold Atoms into Silver Nanoclusters. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18977-18983 Molecular Basis Underlying Host Immunity Subversion by PE/PPE Family Molecules. <i>DNA and Cell</i>	16.4	48
263	Real Time Monitoring of the Dynamic Intracluster Diffusion of Single Gold Atoms into Silver Nanoclusters. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18977-18983 Molecular Basis Underlying Host Immunity Subversion by PE/PPE Family Molecules. <i>DNA and Cell Biology</i> , 2019 , 38, 1178-1187	16.4	48
263 262 261	Real Time Monitoring of the Dynamic Intracluster Diffusion of Single Gold Atoms into Silver Nanoclusters. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18977-18983 Molecular Basis Underlying Host Immunity Subversion by PE/PPE Family Molecules. <i>DNA and Cell Biology</i> , 2019 , 38, 1178-1187 AIE-Type Metal Nanoclusters: Synthesis, Luminescence, Fundamentals and Applications 2019 , 265-289 Comprehensive analysis of protein acetyltransferases of human pathogen Mycobacterium	3.6	48 6 2
263 262 261 260	Real Time Monitoring of the Dynamic Intracluster Diffusion of Single Gold Atoms into Silver Nanoclusters. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18977-18983 Molecular Basis Underlying Host Immunity Subversion by PE/PPE Family Molecules. <i>DNA and Cell Biology</i> , 2019 , 38, 1178-1187 AIE-Type Metal Nanoclusters: Synthesis, Luminescence, Fundamentals and Applications 2019 , 265-289 Comprehensive analysis of protein acetyltransferases of human pathogen Mycobacterium tuberculosis. <i>Bioscience Reports</i> , 2019 , 39, Synergistic Antimicrobial Nanomaterials: Synergistic Antimicrobial Capability of Magnetically Oriented Graphene Oxide Conjugated with Gold Nanoclusters (Adv. Funct. Mater. 46/2019).	16.4 3.6 4.1	48 6 2
263 262 261 260	Real Time Monitoring of the Dynamic Intracluster Diffusion of Single Gold Atoms into Silver Nanoclusters. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18977-18983 Molecular Basis Underlying Host Immunity Subversion by PE/PPE Family Molecules. <i>DNA and Cell Biology</i> , 2019 , 38, 1178-1187 AIE-Type Metal Nanoclusters: Synthesis, Luminescence, Fundamentals and Applications 2019 , 265-289 Comprehensive analysis of protein acetyltransferases of human pathogen Mycobacterium tuberculosis. <i>Bioscience Reports</i> , 2019 , 39, Synergistic Antimicrobial Nanomaterials: Synergistic Antimicrobial Capability of Magnetically Oriented Graphene Oxide Conjugated with Gold Nanoclusters (Adv. Funct. Mater. 46/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970320 Engineering ultrasmall metal nanoclusters for photocatalytic and electrocatalytic applications.	16.4 3.6 4.1 15.6	48 6 2 8

255	Silver Doping-Induced Luminescence Enhancement and Red-Shift of Gold Nanoclusters with Aggregation-Induced Emission. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 765-769	4.5	34
254	Mce-associated protein Rv0177 alters the cell wall structure of Mycobacterium smegmatis and promotes macrophage apoptosis via regulating the cytokines. <i>International Immunopharmacology</i> , 2019 , 66, 205-214	5.8	6
253	Microbial synthesis of Pd-Pt alloy nanoparticles using Shewanella oneidensis MR-1 with enhanced catalytic activity for nitrophenol and azo dyes reduction. <i>Nanotechnology</i> , 2019 , 30, 065607	3.4	22
252	Regulation of host cell pyroptosis and cytokines production by Mycobacterium tuberculosis effector PPE60 requires LUBAC mediated NF-B signaling. <i>Cellular Immunology</i> , 2019 , 335, 41-50	4.4	14
251	Probing the Qi of traditional Chinese herbal medicines by the biological synthesis of nano-Au. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 3156-3162	7-3	1
250	Surface Ligand Chemistry of Gold Nanoclusters Determines Their Antimicrobial Ability. <i>Chemistry of Materials</i> , 2018 , 30, 2800-2808	9.6	77
249	Structure and formation of highly luminescent protein-stabilized gold clusters. <i>Chemical Science</i> , 2018 , 9, 2782-2790	9.4	57
248	Conductive 3D sponges for affordable and highly-efficient water purification. <i>Nanoscale</i> , 2018 , 10, 477	1 <i></i> 4778	46
247	Tailoring the Selectivity of Bimetallic CopperPalladium Nanoalloys for Electrocatalytic Reduction of CO2 to CO. ACS Applied Energy Materials, 2018, 1, 883-890	6.1	47
246	Sigma factors mediated signaling in Mycobacterium tuberculosis. <i>Future Microbiology</i> , 2018 , 13, 231-24	0 2.9	2
245	Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters. <i>Coordination Chemistry Reviews</i> , 2018 , 368, 60-79	23.2	153
244	Hollow Porous Carbon with in situ Generated Monodisperse Gold Nanoclusters for Efficient CO Oxidation. <i>ChemCatChem</i> , 2018 , 10, 837-842	5.2	3
243	Ligands Modulate Reaction Pathway in the Hydrogenation of 4-Nitrophenol Catalyzed by Gold Nanoclusters. <i>ChemCatChem</i> , 2018 , 10, 395-402	5.2	38
242	Design and mechanistic study of a novel gold nanocluster-based drug delivery system. <i>Nanoscale</i> , 2018 , 10, 10166-10172	7.7	58
241	Engineering Functional Metal Materials at the Atomic Level. Advanced Materials, 2018, 30, e1802751	24	130
240	Integrated Hierarchical Carbon Flake Arrays with Hollow P-Doped CoSe2 Nanoclusters as an Advanced Bifunctional Catalyst for ZnAir Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1804846	15.6	126
239	The Synergistic Effect of Exogenous Glutamine and Rifampicin Against Persisters. <i>Frontiers in Microbiology</i> , 2018 , 9, 1625	5.7	4
238	Synthesis of Water-Soluble [Au(SR)] Using a Stoichiometric Amount of NaBH. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11370-11377	16.4	72

(2017-2018)

237	Mycobacterium tuberculosis toxin Rv2872 is an RNase involved in vancomycin stress response and biofilm development. <i>Applied Microbiology and Biotechnology</i> , 2018 , 102, 7123-7133	5.7	4
236	Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates. <i>Nature Communications</i> , 2018 , 9, 2379	17.4	39
235	Antimicrobial silver nanomaterials. Coordination Chemistry Reviews, 2018, 357, 1-17	23.2	347
234	Cyclodextringold nanocluster decorated TiO2 enhances photocatalytic decomposition of organic pollutants. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1102-1108	13	69
233	Hydride-induced ligand dynamic and structural transformation of gold nanoclusters during a catalytic reaction. <i>Nanoscale</i> , 2018 , 10, 23113-23121	7.7	13
232	The Biology and Role of Interleukin-32 in Tuberculosis. <i>Journal of Immunology Research</i> , 2018 , 2018, 153	35,1594	6
231	Metal Nanoclusters: Engineering Functional Metal Materials at the Atomic Level (Adv. Mater. 47/2018). <i>Advanced Materials</i> , 2018 , 30, 1870358	24	8
230	Understanding the Optical Properties of [email[protected] Bimetallic Nanoclusters through Time-Resolved and Nonlinear Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 24368-24379	3.8	20
229	Rational Design of High-Performance Continuous-Flow Microreactors Based on Gold Nanoclusters and Graphene for Catalysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15425-15433	8.3	17
228	Unique size-dependent nanocatalysis revealed at the single atomically precise gold cluster level. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 10588-10593	3 ^{11.5}	43
227	Open hollow Co P t clusters embedded in carbon nanoflake arrays for highly efficient alkaline water splitting. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20214-20223	13	29
226	Molecular-Scale Ligand Effects in Small Gold-Thiolate Nanoclusters. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15430-15436	16.4	56
225	Toward Total Synthesis of Thiolate-Protected Metal Nanoclusters. <i>Accounts of Chemical Research</i> , 2018 , 51, 1338-1348	24.3	305
224	Revealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approach. <i>Nature Communications</i> , 2018 , 9, 1979	17.4	75
223	Nano-TiO Drives Epithelial-Mesenchymal Transition in Intestinal Epithelial Cancer Cells. <i>Small</i> , 2018 , 14, e1800922	11	42
222	Characterization of a putative ArsR transcriptional regulator encoded by Rv2642 from Mycobacterium tuberculosis. <i>Journal of Biomolecular Structure and Dynamics</i> , 2017 , 35, 2031-2039	3.6	6
221	Mycobacterium tuberculosis rv1400c encodes functional lipase/esterase. <i>Protein Expression and Purification</i> , 2017 , 129, 143-149	2	10
220	Lysine succinylation of Mycobacterium tuberculosis isocitrate lyase (ICL) fine-tunes the microbial resistance to antibiotics. <i>Journal of Biomolecular Structure and Dynamics</i> , 2017 , 35, 1030-1041	3.6	11

219	Proteomic analysis of lysine succinylation of the human pathogen Histoplasma capsulatum. <i>Journal of Proteomics</i> , 2017 , 154, 109-117	3.9	18
218	An Infectious Disease-Associated Polymorphism Regulates IL-12/23 p40 Transcription Involving Poly(ADP-Ribose) Polymerase 1. <i>Journal of Immunology</i> , 2017 , 198, 2935-2942	5.3	5
217	Golden Carbon Nanotube Membrane for Continuous Flow Catalysis. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 2999-3007	3.9	78
216	Fe2O3 Nanoneedles on Ultrafine Nickel Nanotube Arrays as Efficient Anode for High-Performance Asymmetric Supercapacitors. <i>Advanced Functional Materials</i> , 2017 , 27, 1606728	15.6	236
215	The Global Ethics Corner: foundations, beliefs, and the teaching of biomedical and scientific ethics around the world. <i>Biochemistry and Molecular Biology Education</i> , 2017 , 45, 385-395	1.3	3
214	Mycobacterium tuberculosis PE_PGRS41 Enhances the Intracellular Survival of M. smegmatis within Macrophages Via Blocking Innate Immunity and Inhibition of Host Defense. <i>Scientific Reports</i> , 2017 , 7, 46716	4.9	36
213	Directing Assembly and Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. <i>ACS Applied Materials & Drug Delivery.</i> 15286-15296	9.5	199
212	Antimicrobial Gold Nanoclusters. ACS Nano, 2017, 11, 6904-6910	16.7	352
211	Preface for Special Topic: Few-atom metal nanoclusters and their biological applications. <i>APL Materials</i> , 2017 , 5, 053001	5.7	6
21 0	Characterization and function of Mycobacterium tuberculosis H37Rv Lipase Rv1076 (LipU). <i>Microbiological Research</i> , 2017 , 196, 7-16	5.3	18
209	Mycobacterium tuberculosis PE_PGRS18 enhances the intracellular survival of M. smegmatis via altering host macrophage cytokine profiling and attenuating the cell apoptosis. <i>Apoptosis: an International Journal on Programmed Cell Death</i> , 2017 , 22, 502-509	5.4	17
208	Overexpression of Rv2788 increases mycobacterium stresses survival. <i>Microbiological Research</i> , 2017 , 195, 51-59	5.3	5
207	Recent advances in noble metal-based nanocomposites for electrochemical reactions. <i>Materials Today Energy</i> , 2017 , 6, 115-127	7	34
206	Understanding seed-mediated growth of gold nanoclusters at molecular level. <i>Nature Communications</i> , 2017 , 8, 927	17.4	178
205	Complete genome sequence analysis of the novel mycobacteriophage Shandong1. <i>Archives of Virology</i> , 2017 , 162, 3903-3905	2.6	
204	Mycobacterium tuberculosis Major Facilitator Superfamily Transporters. <i>Journal of Membrane Biology</i> , 2017 , 250, 573-585	2.3	19
203	Mycobacterium tuberculosis PPE44 (Rv2770c) is involved in response to multiple stresses and promotes the macrophage expression of IL-12 p40 and IL-6 via the p38, ERK, and NF-B signaling axis. <i>International Immunopharmacology</i> , 2017 , 50, 319-329	5.8	15
202	Engineering gold-based radiosensitizers for cancer radiotherapy. <i>Materials Horizons</i> , 2017 , 4, 817-831	14.4	132

(2016-2017)

	17 43
	43
4	
4	100
	6
	17
	10
	24
	7
	11
	10
	51
5	156
	18
2	144
	29
	6
	18
	6

183	Soft, Oxidative Stripping of Alkyl Thiolate Ligands from Hydroxyapatite-Supported Gold Nanoclusters for Oxidation Reactions. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 532-9	4.5	51
182	Mycobacterial IclR family transcriptional factor Rv2989 is specifically involved in isoniazid tolerance by regulating the expression of catalase encoding gene katG. <i>RSC Advances</i> , 2016 , 6, 54661-54667	3.7	4
181	Hollow Mesoporous Silica Nanocarriers with Multifunctional Capping Agents for In Vivo Cancer Imaging and Therapy. <i>Small</i> , 2016 , 12, 360-70	11	45
180	Mycobacteriophage putative GTPase-activating protein can potentiate antibiotics. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 8169-77	5.7	1
179	Converting ultrafine silver nanoclusters to monodisperse silver sulfide nanoparticles via a reversible phase transfer protocol. <i>Nano Research</i> , 2016 , 9, 942-950	10	17
178	Global profiling of lysine acetylation in human histoplasmosis pathogen Histoplasma capsulatum. <i>International Journal of Biochemistry and Cell Biology</i> , 2016 , 73, 1-10	5.6	8
177	Platinum-based heterogeneous nanomaterials via wet-chemistry approaches toward electrocatalytic applications. <i>Advances in Colloid and Interface Science</i> , 2016 , 230, 29-53	14.3	44
176	Rv3369 Induces Cytokine Interleukin-1 Production and Enhances Mycobacterium smegmatis Intracellular Survival. <i>Journal of Interferon and Cytokine Research</i> , 2016 , 36, 140-7	3.5	3
175	Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters. <i>Analytical Chemistry</i> , 2016 , 88, 820-5	7.8	122
174	Promotion of reversible Li+ storage in transition metal dichalcogenides by Ag nanoclusters. <i>NPG Asia Materials</i> , 2016 , 8, e247-e247	10.3	16
173	Proteome-wide Lysine Glutarylation Profiling of the Mycobacterium tuberculosis H37Rv. <i>Journal of Proteome Research</i> , 2016 , 15, 1379-85	5.6	22
172	Luminescent Metal Nanoclusters with Aggregation-Induced Emission. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 962-75	6.4	493
171	Insights into the effect of surface ligands on the optical properties of thiolated Au25 nanoclusters. <i>Chemical Communications</i> , 2016 , 52, 5234-7	5.8	59
170	Bacterial cytoskeleton and implications for new antibiotic targets. <i>Journal of Drug Targeting</i> , 2016 , 24, 392-8	5.4	6
169	The effect of Mycobacterium tuberculosis CRISPR-associated Cas2 (Rv2816c) on stress response genes expression, morphology and macrophage survival of Mycobacterium smegmatis. <i>Infection, Genetics and Evolution</i> , 2016 , 40, 295-301	4.5	8
168	Interleukin-10 Family and Tuberculosis: An Old Story Renewed. <i>International Journal of Biological Sciences</i> , 2016 , 12, 710-7	11.2	32
167	Mycobacterium tuberculosis PPE32 promotes cytokines production and host cell apoptosis through caspase cascade accompanying with enhanced ER stress response. <i>Oncotarget</i> , 2016 , 7, 67347-67359	3.3	25
166	The Global Reciprocal Reprogramming between Mycobacteriophage SWU1 and Mycobacterium Reveals the Molecular Strategy of Subversion and Promotion of Phage Infection. <i>Frontiers in Microbiology</i> , 2016 , 7, 41	5.7	5

(2016-2016)

165	Nanostructured Iron Oxide/Hydroxide-Based Electrode Materials for Supercapacitors. <i>ChemNanoMat</i> , 2016 , 2, 588-600	3.5	62
164	Carbon Monoxide: A Mild and Efficient Reducing Agent towards Atomically Precise Gold Nanoclusters. <i>Chemical Record</i> , 2016 , 16, 1761-71	6.6	20
163	Synthesis of thiolate-protected Au nanoparticles revisited: U-shape trend between the size of nanoparticles and thiol-to-Au ratio. <i>Chemical Communications</i> , 2016 , 52, 9522-5	5.8	20
162	Dual-Functional Coating of Forward Osmosis Membranes for Hydrophilization and Antimicrobial Resistance. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500599	4.6	13
161	Hydrophilic Mineral Coating of Membrane Substrate for Reducing Internal Concentration Polarization (ICP) in Forward Osmosis. <i>Scientific Reports</i> , 2016 , 6, 19593	4.9	57
160	Mycobacterium Lysine Eminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level. <i>Scientific Reports</i> , 2016 , 6, 19695	4.9	19
159	Silica Nanoparticles: Probing the Microporous Structure of Silica Shell Via Aggregation-Induced Emission in Au(I)-Thiolate@SiO2 Nanoparticle (Small 47/2016). <i>Small</i> , 2016 , 12, 6536-6536	11	2
158	Uptake and effect of highly fluorescent silver nanoclusters on Scenedesmus obliquus. <i>Chemosphere</i> , 2016 , 153, 322-31	8.4	17
157	Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. <i>Coordination Chemistry Reviews</i> , 2016 , 322, 1-29	23.2	229
156	Highly Luminescent Thiolated Gold Nanoclusters Impregnated in Nanogel. <i>Chemistry of Materials</i> , 2016 , 28, 4009-4016	9.6	173
155	Template-Assisted Fabrication of Thin-Film Composite Forward-Osmosis Membrane with Controllable Internal Concentration Polarization. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 5327-5334	3.9	28
154	Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells. <i>Nanoscale</i> , 2016 , 8, 9614-20	7.7	43
153	Gold nanocluster sensitized TiO2 nanotube arrays for visible-light driven photoelectrocatalytic removal of antibiotic tetracycline. <i>Nanoscale</i> , 2016 , 8, 10145-51	7.7	80
152	Nitrogen-doped graphene nanosheets as reactive water purification membranes. <i>Nano Research</i> , 2016 , 9, 1983-1993	10	67
151	l-Serine potentiates fluoroquinolone activity against Escherichia coli by enhancing endogenous reactive oxygen species production. <i>Journal of Antimicrobial Chemotherapy</i> , 2016 , 71, 2192-9	5.1	28
150	Mycobacterium tuberculosis PE13 (Rv1195) manipulates the host cell fate via p38-ERK-NF- B axis and apoptosis. <i>Apoptosis: an International Journal on Programmed Cell Death</i> , 2016 , 21, 795-808	5.4	17
149	Functionalization of metal nanoclusters for biomedical applications. <i>Analyst, The</i> , 2016 , 141, 3126-40	5	235
148	Emerging nanotechnology for environmental applications. <i>Nanotechnology Reviews</i> , 2016 , 5, 1-2	6.3	11

147	An Effective Design of Electrically Conducting Thin-Film Composite (TFC) Membranes for Bio and Organic Fouling Control in Forward Osmosis (FO). <i>Environmental Science & Eamp; Technology</i> , 2016 , 50, 10596-10605	10.3	40
146	MicroRNAs play big roles in modulating macrophages response toward mycobacteria infection. <i>Infection, Genetics and Evolution</i> , 2016 , 45, 378-382	4.5	21
145	Antimicrobial Cluster Bombs: Silver Nanoclusters Packed with Daptomycin. ACS Nano, 2016, 10, 7934-4	216.7	252
144	Involvement of Holliday junction resolvase in fluoroquinolone-mediated killing of Mycobacterium smegmatis. <i>Antimicrobial Agents and Chemotherapy</i> , 2015 , 59, 1782-5	5.9	8
143	Mycobacterium tuberculosis effectors involved in host-pathogen interaction revealed by a multiple scales integrative pipeline. <i>Infection, Genetics and Evolution</i> , 2015 , 32, 1-11	4.5	8
142	Exploring metal nanoclusters for lithium-oxygen batteries. <i>ACS Applied Materials & Damp; Interfaces</i> , 2015 , 7, 5488-96	9.5	27
141	A photo-bactericidal thin film composite membrane for forward osmosis. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6781-6786	13	29
140	Genomic and proteomic features of mycobacteriophage SWU1 isolated from China soil. <i>Gene</i> , 2015 , 561, 45-53	3.8	12
139	Mycobacterium smegmatis MSMEG_3705 encodes a selective major facilitator superfamily efflux pump with multiple roles. <i>Current Microbiology</i> , 2015 , 70, 801-9	2.4	4
138	The support effect on the size and catalytic activity of thiolated AuIhanoclusters as precatalysts. <i>Nanoscale</i> , 2015 , 7, 6325-33	7.7	122
137	Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2. <i>Environmental Science: Water Research and Technology</i> , 2015 , 1, 769-778	4.2	63
136	Rapid adsorption removal of arsenate by hydrous cerium oxidegraphene composite. <i>RSC Advances</i> , 2015 , 5, 64983-64990	3.7	70
135	Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. <i>Scientific Reports</i> , 2015 , 5, 8669	4.9	183
134	Engineering noble metal nanomaterials for environmental applications. <i>Nanoscale</i> , 2015 , 7, 7502-19	7.7	104
133	Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles. <i>Journal of Hazardous Materials</i> , 2015 , 297, 146-	-5 ^{12.8}	75
132	Mycobacterium tuberculosis effectors interfering host apoptosis signaling. <i>Apoptosis: an International Journal on Programmed Cell Death</i> , 2015 , 20, 883-91	5.4	19
131	Enhancing stability through ligand-shell engineering: A case study with Au25(SR)18 nanoclusters. <i>Nano Research</i> , 2015 , 8, 3488-3495	10	53
130	Phosphorylation of Mycobacterium tuberculosis protein tyrosine kinase A PtkA by Ser/Thr protein kinases. <i>Biochemical and Biophysical Research Communications</i> , 2015 , 467, 421-6	3.4	15

(2015-2015)

129	Surface Reaction Route To Increase the Loading of Antimicrobial Ag Nanoparticles in Forward Osmosis Membranes. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 2959-2966	8.3	28
128	Boiling water synthesis of ultrastable thiolated silver nanoclusters with aggregation-induced emission. <i>Chemical Communications</i> , 2015 , 51, 15165-8	5.8	112
127	Biosynthesis and Regulation of Bioprotective Alkaloids in the Gramineae Endophytic Fungi with Implications for Herbivores Deterrents. <i>Current Microbiology</i> , 2015 , 71, 719-24	2.4	5
126	Resistance and integron characterization of Acinetobacter baumannii in a teaching hospital in Chongqing, China. <i>New Microbes and New Infections</i> , 2015 , 8, 103-8	4.1	12
125	Counterion-assisted shaping of nanocluster supracrystals. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 184-9	16.4	66
124	Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis. <i>International Journal of Biochemistry and Cell Biology</i> , 2015 , 59, 193-202	5.6	109
123	Storage of gold nanoclusters in muscle leads to their biphasic in vivo clearance. <i>Small</i> , 2015 , 11, 1683-9	011	45
122	Hierarchical heterostructures of Ag nanoparticles decorated MnO2 nanowires as promising electrodes for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1216-1221	13	160
121	First succinyl-proteome profiling of extensively drug-resistant Mycobacterium tuberculosis revealed involvement of succinylation in cellular physiology. <i>Journal of Proteome Research</i> , 2015 , 14, 107-19	5.6	80
120	Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters. <i>Biomaterials</i> , 2015 , 39, 234-48	15.6	138
119	Toxicity profiling of water contextual zinc oxide, silver, and titanium dioxide nanoparticles in human oral and gastrointestinal cell systems. <i>Environmental Toxicology</i> , 2015 , 30, 1459-69	4.2	44
118	Proteasome Accessory Factor C (pafC) Is a novel gene Involved in Mycobacterium Intrinsic Resistance to broad-spectrum antibioticsFluoroquinolones. <i>Scientific Reports</i> , 2015 , 5, 11910	4.9	9
117	Counterion-Assisted Shaping of Nanocluster Supracrystals. <i>Angewandte Chemie</i> , 2015 , 127, 186-191	3.6	10
116	Functionalization and Application. Frontiers of Nanoscience, 2015, 9, 297-345	0.7	1
115	PE11 (Rv1169c) selectively alters fatty acid components of Mycobacterium smegmatis and host cell interleukin-6 level accompanied with cell death. <i>Frontiers in Microbiology</i> , 2015 , 6, 613	5.7	32
114	Roles of Protein N-Myristoylation and Translational Medicine Applications. <i>Critical Reviews in Eukaryotic Gene Expression</i> , 2015 , 25, 259-68	1.3	3
113	Implications of Mycobacterium Major Facilitator Superfamily for Novel Measures against Tuberculosis. <i>Critical Reviews in Eukaryotic Gene Expression</i> , 2015 , 25, 315-21	1.3	3
112	The Epigenetic Modifications of Genes Associated with Tuberculosis Susceptibility and Implications for Epi-Drugs. <i>Critical Reviews in Eukaryotic Gene Expression</i> , 2015 , 25, 349-62	1.3	5

111	Biology of IL-27 and its role in the host immunity against Mycobacterium tuberculosis. <i>International Journal of Biological Sciences</i> , 2015 , 11, 168-75	11.2	28
110	Decoupling the CO-Reduction Protocol to Generate Luminescent Au22(SR)18 Nanocluster. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 10910-10918	3.8	37
109	Introducing amphiphilicity to noble metal nanoclusters via phase-transfer driven ion-pairing reaction. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2128-36	16.4	117
108	Phosphorylation control of protein tyrosine phosphatase A activity in Mycobacterium tuberculosis. <i>FEBS Letters</i> , 2015 , 589, 326-31	3.8	27
107	Recent Advances in the Synthesis and Applications of Ultrasmall Bimetallic Nanoclusters. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 613-629	3.1	86
106	The Role of PARP-1 in Host-Pathogen Interaction and Cellular Stress Responses. <i>Critical Reviews in Eukaryotic Gene Expression</i> , 2015 , 25, 175-90	1.3	3
105	Stellated Ag-Pt bimetallic nanoparticles: an effective platform for catalytic activity tuning. <i>Scientific Reports</i> , 2014 , 4, 3969	4.9	63
104	Assembly of nanoions via electrostatic interactions: ion-like behavior of charged noble metal nanoclusters. <i>Scientific Reports</i> , 2014 , 4, 3848	4.9	42
103	Balancing the Rate of Cluster Growth and Etching for Gram-Scale Synthesis of Thiolate-Protected Au25 Nanoclusters with Atomic Precision. <i>Angewandte Chemie</i> , 2014 , 126, 4711-4715	3.6	47
102	Metabolizable Bi2Se3 Nanoplates: Biodistribution, Toxicity, and Uses for Cancer Radiation Therapy and Imaging. <i>Advanced Functional Materials</i> , 2014 , 24, 1718-1729	15.6	200
101	Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au(25) nanoclusters with atomic precision. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 4623-7	16.4	229
100	Bacteriophage polysaccharide depolymerases and biomedical applications. <i>BioDrugs</i> , 2014 , 28, 265-74	7.9	82
99	Phage based green chemistry for gold ion reduction and gold retrieval. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 910-7	9.5	29
98	Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. <i>Nanoscale</i> , 2014 , 6, 157-6	1 _{7.7}	165
97	Identification of a highly luminescent Au22(SG)18 nanocluster. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1246-9	16.4	436
96	Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. <i>Chemical Communications</i> , 2014 , 50, 5143-55	5.8	346
95	Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters. <i>RSC Advances</i> , 2014 , 4, 60581-60596	3.7	113
94	Hierarchical TiO2-B nanowire@⊞e2O3 nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries. <i>Nano Research</i> , 2014 , 7, 1797-1808	10	90

93	Mycobacterium tuberculosis PPE family protein Rv1808 manipulates cytokines profile via co-activation of MAPK and NF-B signaling pathways. <i>Cellular Physiology and Biochemistry</i> , 2014 , 33, 273-	- 88 9	40
92	Protein-based fluorescent metal nanoclusters for small molecular drug screening. <i>Chemical Communications</i> , 2014 , 50, 13805-8	5.8	55
91	Back to Basics: Exploiting the Innate Physico-chemical Characteristics of Nanomaterials for Biomedical Applications. <i>Advanced Functional Materials</i> , 2014 , 24, 5936-5955	15.6	180
90	Nanomedicine: Back to Basics: Exploiting the Innate Physico-chemical Characteristics of Nanomaterials for Biomedical Applications (Adv. Funct. Mater. 38/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 5930-5930	15.6	2
89	Learning from nature: introducing an epiphyte-host relationship in the synthesis of alloy nanoparticles by co-reduction methods. <i>Chemical Communications</i> , 2014 , 50, 9765-8	5.8	6
88	Architectural design of heterogeneous metallic nanocrystalsprinciples and processes. <i>Accounts of Chemical Research</i> , 2014 , 47, 3530-40	24.3	61
87	Ultrasensitive IgG quantification using DNA nano-pyramids. NPG Asia Materials, 2014, 6, e112-e112	10.3	52
86	A graphene-based electrochemical filter for water purification. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16554-16562	13	87
85	Convenient purification of gold clusters by co-precipitation for improved sensing of hydrogen peroxide, mercury ions and pesticides. <i>Chemical Communications</i> , 2014 , 50, 5703-5	5.8	65
84	Antibiotic drugs targeting bacterial RNAs. Acta Pharmaceutica Sinica B, 2014 , 4, 258-65	15.5	60
83	Mycobacterium tuberculosis serine protease Rv3668c can manipulate the host-pathogen interaction via Erk-NF- B axis-mediated cytokine differential expression. <i>Journal of Interferon and Cytokine Research</i> , 2014 , 34, 686-98	3.5	10
82	Bio-NCsthe marriage of ultrasmall metal nanoclusters with biomolecules. <i>Nanoscale</i> , 2014 , 6, 13328-4	77.7	162
81	Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I)-thiolate complexes to evolution of AuIhanoclusters. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10577-80	16.4	255
80	Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. <i>ACS Applied Materials & District A</i>	9.5	91
79	Presentation matters: Identity of gold nanocluster capping agent governs intracellular uptake and cell metabolism. <i>Nano Research</i> , 2014 , 7, 805-815	10	75
78	Ultrasmall Au(10-12)(SG)(10-12) nanomolecules for high tumor specificity and cancer radiotherapy. <i>Advanced Materials</i> , 2014 , 26, 4565-8	24	340
77	Unexpected extensive lysine acetylation in the trump-card antibiotic producer Streptomyces roseosporus revealed by proteome-wide profiling. <i>Journal of Proteomics</i> , 2014 , 106, 260-9	3.9	76
76	Facile synthesis of water-soluble Au(25-x)Ag(x) nanoclusters protected by mono- and bi-thiolate ligands. <i>Chemical Communications</i> , 2014 , 50, 7459-62	5.8	53

75	The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. <i>Biomaterials</i> , 2014 , 35, 6707-15	15.6	138
74	Navigating through the maze of TLR2 mediated signaling network for better mycobacterium infection control. <i>Biochimie</i> , 2014 , 102, 1-8	4.6	21
73	Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens. <i>Critical Reviews in Eukaryotic Gene Expression</i> , 2014 , 24, 269-79	1.3	16
7 2	The roles of bacterial GCN5-related N-acetyltransferases. <i>Critical Reviews in Eukaryotic Gene Expression</i> , 2014 , 24, 77-87	1.3	21
71	Mycobacterium tuberculosis Rv3402c enhances mycobacterial survival within macrophages and modulates the host pro-inflammatory cytokines production via NF-kappa B/ERK/p38 signaling. <i>PLoS ONE</i> , 2014 , 9, e94418	3.7	28
70	Comparative genomics of Mycobacterium tuberculosis drug efflux pumps and their transcriptional regulators. <i>Critical Reviews in Eukaryotic Gene Expression</i> , 2014 , 24, 163-80	1.3	7
69	Nanostructured lithium titanate and lithium titanate/carbon nanocomposite as anode materials for advanced lithium-ion batteries. <i>Nanotechnology Reviews</i> , 2014 , 3,	6.3	13
68	Nanostructured Materials for Clean Energy and Environmental Challenges. <i>Journal of Nanomaterials</i> , 2014 , 2014, 1-2	3.2	
67	Prophage-like elements present in Mycobacterium genomes. <i>BMC Genomics</i> , 2014 , 15, 243	4.5	16
66	Solvent Controls the Formation of Au29(SR)20 Nanoclusters in the CO-Reduction Method. <i>Particle and Particle Systems Characterization</i> , 2014 , 31, 652-656	3.1	19
65	Radiosensitizers: Enhanced Tumor Accumulation of Sub-2 nm Gold Nanoclusters for Cancer Radiation Therapy (Adv. Healthcare Mater. 1/2014). <i>Advanced Healthcare Materials</i> , 2014 , 3, 152-152	10.1	7
64	Correction to Identification of a Highly Luminescent Au22(SG)18 Nanocluster <i>Journal of the American Chemical Society</i> , 2014 , 136, 17355-17355	16.4	2
63	Comparative genomics of the Mycobacterium signaling architecture and implications for a novel live attenuated Tuberculosis vaccine. <i>Human Vaccines and Immunotherapeutics</i> , 2014 , 10, 159-63	4.4	1
62	Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. <i>Advanced Healthcare Materials</i> , 2014 , 3, 133-41	10.1	266
61	Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. <i>Nano Research</i> , 2014 , 7, 301-307	10	121
60	Intellectual property education exemplified by the patents on the CRISPR/Cas9 system. <i>Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji</i> , 2014 , 36, 1269-73	1.4	1
59	Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. <i>Analytical Chemistry</i> , 2013 , 85, 1913-9	7.8	279
58	Highly luminescent silver nanoclusters with tunable emissions: cyclic reduction decomposition synthesis and antimicrobial properties. NPG Asia Materials, 2013, 5, e39-e39	10.3	207

(2012-2013)

57	Engineering the architectural diversity of heterogeneous metallic nanocrystals. <i>Nature Communications</i> , 2013 , 4, 1454	17.4	88
56	Tailoring the protein conformation to synthesize different-sized gold nanoclusters. <i>Chemical Communications</i> , 2013 , 49, 9740-2	5.8	56
55	Amphiphilic Polymeric Nanocarriers with Luminescent Gold Nanoclusters for Concurrent Bioimaging and Controlled Drug Release. <i>Advanced Functional Materials</i> , 2013 , 23, 4324-4331	15.6	88
54	Engineering nanostructured materials for sustainable future. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2013 , 8, 203-204	1.3	
53	Hierarchically structured CoD@Pt@MnOIhanowire arrays for high-performance supercapacitors. <i>Scientific Reports</i> , 2013 , 3, 2978	4.9	212
52	Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 858-71	4.5	261
51	Scalable and Precise Synthesis of Thiolated Au10🛮2, Au15, Au18, and Au25 Nanoclusters via pH Controlled CO Reduction. <i>Chemistry of Materials</i> , 2013 , 25, 946-952	9.6	197
50	Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters. <i>Nanoscale</i> , 2013 , 5, 4606-20	7.7	93
49	Traveling through the Desalting Column Spontaneously Transforms Thiolated Ag Nanoclusters from Nonluminescent to Highly Luminescent. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1811-5	6.4	28
48	Two-phase synthesis of small thiolate-protected Auland Aulhanoclusters. <i>Small</i> , 2013 , 9, 2696-701	11	67
47	Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. <i>Nature Communications</i> , 2013 , 4, 1673	17.4	326
46	The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for gram-positive bacteria over erythrocytes. <i>Nanoscale</i> , 2013 , 5, 3834-40	7.7	105
45	Mycobacterium tuberculosis PE_PGRS17 promotes the death of host cell and cytokines secretion via Erk kinase accompanying with enhanced survival of recombinant Mycobacterium smegmatis. <i>Journal of Interferon and Cytokine Research</i> , 2013 , 33, 452-8	3.5	15
44	Guiding Principles in the Galvanic Replacement Reaction of an Underpotentially Deposited Metal Layer for Site-Selective Deposition and Shape and Size Control of Satellite Nanocrystals. <i>Chemistry of Materials</i> , 2013 , 25, 4746-4756	9.6	33
43	Reciprocal Response of Human Oral Epithelial Cells to Internalized Silica Nanoparticles. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 784-793	3.1	29
42	Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries. <i>Journal of Power Sources</i> , 2012 , 212, 28-34	8.9	92
41	Ins and outs of Mycobacterium tuberculosis PPE family in pathogenesis and implications for novel measures against tuberculosis. <i>Journal of Cellular Biochemistry</i> , 2012 , 113, 1087-95	4.7	10
40	Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angewandte Chemie - International Edition, 2012, 51, 2409-13	16.4	277

39	From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16662-70	16.4	1067
38	Biology of a novel mycobacteriophage, SWU1, isolated from Chinese soil as revealed by genomic characteristics. <i>Journal of Virology</i> , 2012 , 86, 10230-1	6.6	9
37	Prokaryotic NElysine acetylomes and implications for new antibiotics. <i>Journal of Cellular Biochemistry</i> , 2012 , 113, 3601-9	4.7	6
36	Observation of cluster size growth in CO-directed synthesis of Au25(SR)18 nanoclusters. <i>ACS Nano</i> , 2012 , 6, 7920-7	16.7	144
35	Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries. <i>Progress in Natural Science: Materials International</i> , 2012 , 22, 572-584	3.6	106
34	Biological and Biomimetic Synthesis of Metal Nanomaterials 2012 ,		2
33	Highly luminescent Ag+ nanoclusters for Hg2+ ion detection. <i>Nanoscale</i> , 2012 , 4, 1968-71	7.7	116
32	Fast Synthesis of Thiolated Au25 Nanoclusters via Protection-Deprotection Method. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2310-4	6.4	66
31	Comparative genomic structures of Mycobacterium CRISPR-Cas. <i>Journal of Cellular Biochemistry</i> , 2012 , 113, 2464-73	4.7	33
30	Reversible Lithium-Ion Storage in Silver-Treated Nanoscale Hollow Porous Silicon Particles. <i>Angewandte Chemie</i> , 2012 , 124, 2459-2463	3.6	19
29	Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. <i>ACS Nano</i> , 2011 , 5, 8800-8	16.7	345
28	Polyphosphate deficiency affects the sliding motility and biofilm formation of Mycobacterium smegmatis. <i>Current Microbiology</i> , 2011 , 63, 470-6	2.4	16
27	Regulatory and pathogenesis roles of Mycobacterium Lrp/AsnC family transcriptional factors. <i>Journal of Cellular Biochemistry</i> , 2011 , 112, 2655-62	4.7	36
26	Role of mycobacteria effectors in phagosome maturation blockage and new drug targets discovery. Journal of Cellular Biochemistry, 2011 , 112, 2688-93	4.7	7
25	Synthesis of shield-like singly twinned high-index Au nanoparticles. <i>Nanoscale</i> , 2011 , 3, 1497-500	7.7	20
24	Energy Transfer between Conjugated-Oligoelectrolyte-Substituted POSS and Gold Nanocluster for Multicolor Intracellular Detection of Mercury Ion. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 13069-130)7 3 .8	90
23	Highly selective and ultrasensitive detection of Hg(2+) based on fluorescence quenching of Au nanoclusters by Hg(2+)-Au(+) interactions. <i>Chemical Communications</i> , 2010 , 46, 961-3	5.8	629
22	Monodispersity control in the synthesis of monometallic and bimetallic quasi-spherical gold and silver nanoparticles. <i>Nanoscale</i> , 2010 , 2, 1962-75	7.7	124

21	Tuning the crystallinity of Au nanoparticles. Small, 2010, 6, 523-7	11	56
20	Synthesis of Monodisperse Ag?Au Alloy Nanoparticles with Independently Tunable Morphology, Composition, Size, and Surface Chemistry and Their 3-D Superlattices. <i>Advanced Functional Materials</i> , 2009 , 19, 1387-1398	15.6	87
19	Colloidal Synthesis of Plasmonic Metallic Nanoparticles. <i>Plasmonics</i> , 2009 , 4, 9-22	2.4	70
18	Protein-directed synthesis of highly fluorescent gold nanoclusters. <i>Journal of the American Chemical Society</i> , 2009 , 131, 888-9	16.4	2014
17	Template-free synthesis of porous platinum networks of different morphologies. <i>Langmuir</i> , 2009 , 25, 6454-9	4	22
16	Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation. <i>ACS Nano</i> , 2009 , 3, 139-48	16.7	167
15	The synthesis of SERS-active gold nanoflower tags for in vivo applications. <i>ACS Nano</i> , 2008 , 2, 2473-80	16.7	523
14	Synthesis of Ag@AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell compositions by a galvanic replacement reaction. <i>Small</i> , 2008 , 4, 1067-71	11	132
13	High-Yield Synthesis of Complex Gold Nanostructures in a Fungal System. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 16858-16865	3.8	87
12	General Method for Extended Metal Nanowire Synthesis: Ethanol Induced Self-Assembly. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 17158-17162	3.8	31
11	Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. <i>Small</i> , 2007 , 3, 672-82	11	280
10	Silver nanoplates: from biological to biomimetic synthesis. <i>ACS Nano</i> , 2007 , 1, 429-39	16.7	443
9	Synthesis of Single-Crystalline Gold Nanoplates in Aqueous Solutions through Biomineralization by Serum Albumin Protein. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 10226-10232	3.8	172
8	Seedless, Surfactantless, High-Yield Synthesis of Branched Gold Nanocrystals in HEPES Buffer Solution. <i>Chemistry of Materials</i> , 2007 , 19, 2823-2830	9.6	347
7	Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 15256-63	3.4	182
6	On-line solid-phase extraction of ceramides from yeast with ceramide III imprinted monolith. <i>Journal of Chromatography A</i> , 2003 , 984, 173-83	4.5	55
5	Direct extraction of specific pharmacophoric flavonoids from gingko leaves using a molecularly imprinted polymer for quercetin. <i>Journal of Chromatography A</i> , 2001 , 934, 1-11	4.5	112
4	In Situ Synthesis of Bismuth Nanoclusters within Carbon Nano-Bundles from Metal®rganic Framework for Chloride-Driven Electrochemical Deionization. <i>Advanced Functional Materials</i> ,2110087	15.6	8

3	Cluster Materials as Traceable Antibacterial Agents. Accounts of Materials Research,	7.5	8
2	Engineering Metal Nanoclusters for Targeted Therapeutics: From Targeting Strategies to Therapeutic Applications. <i>Advanced Functional Materials</i> ,2105662	15.6	11
1	Atom-Precision Engineering Chemistry of Noble Metal Nanoparticles. <i>Industrial & Description Chemistry Research</i> ,	3.9	О