Jianping Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3953826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. Journal of the American Chemical Society, 2009, 131, 888-889.	13.7	2,298
2	From Aggregation-Induced Emission of Au(I)–Thiolate Complexes to Ultrabright Au(0)@Au(I)–Thiolate Core–Shell Nanoclusters. Journal of the American Chemical Society, 2012, 134, 16662-16670.	13.7	1,340
3	Highly selective and ultrasensitive detection ofHg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chemical Communications, 2010, 46, 961-963.	4.1	677
4	Luminescent Metal Nanoclusters with Aggregation-Induced Emission. Journal of Physical Chemistry Letters, 2016, 7, 962-975.	4.6	595
5	The Synthesis of SERS-Active Gold Nanoflower Tags for <i>In Vivo</i> Applications. ACS Nano, 2008, 2, 2473-2480.	14.6	578
6	Silver Nanoplates: From Biological to Biomimetic Synthesis. ACS Nano, 2007, 1, 429-439.	14.6	501
7	Antimicrobial silver nanomaterials. Coordination Chemistry Reviews, 2018, 357, 1-17.	18.8	499
8	Identification of a Highly Luminescent Au ₂₂ (SG) ₁₈ Nanocluster. Journal of the American Chemical Society, 2014, 136, 1246-1249.	13.7	490
9	Antimicrobial Gold Nanoclusters. ACS Nano, 2017, 11, 6904-6910.	14.6	469
10	Toward Total Synthesis of Thiolate-Protected Metal Nanoclusters. Accounts of Chemical Research, 2018, 51, 1338-1348.	15.6	422
11	Clusterization-triggered emission: Uncommon luminescence from common materials. Materials Today, 2020, 32, 275-292.	14.2	407
12	Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE–cadherin. Nature Communications, 2013, 4, 1673.	12.8	401
13	Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chemical Communications, 2014, 50, 5143-5155.	4.1	394
14	Ultrasmall Au _{10â^'12} (SG) _{10â^'12} Nanomolecules for High Tumor Specificity and Cancer Radiotherapy. Advanced Materials, 2014, 26, 4565-4568.	21.0	386
15	Seedless, Surfactantless, High-Yield Synthesis of Branched Gold Nanocrystals in HEPES Buffer Solution. Chemistry of Materials, 2007, 19, 2823-2830.	6.7	382
16	Synthesis of Highly Fluorescent Metal (Ag, Au, Pt, and Cu) Nanoclusters by Electrostatically Induced Reversible Phase Transfer. ACS Nano, 2011, 5, 8800-8808.	14.6	362
17	Identification of Active Biomolecules in the High-Yield Synthesis of Single-Crystalline Gold Nanoplates in Algal Solutions. Small, 2007, 3, 672-682.	10.0	323
18	Glutathione-Protected Silver Nanoclusters as Cysteine-Selective Fluorometric and Colorimetric Probe. Analytical Chemistry, 2013, 85, 1913-1919.	6.5	312

#	Article	IF	CITATIONS
19	Enhanced Tumor Accumulation of Subâ€2 nm Gold Nanoclusters for Cancer Radiation Therapy. Advanced Healthcare Materials, 2014, 3, 133-141.	7.6	309
20	Antimicrobial Cluster Bombs: Silver Nanoclusters Packed with Daptomycin. ACS Nano, 2016, 10, 7934-7942.	14.6	304
21	Reversible Lithiumâ€lon Storage in Silverâ€Treated Nanoscale Hollow Porous Silicon Particles. Angewandte Chemie - International Edition, 2012, 51, 2409-2413.	13.8	299
22	Luminescent Noble Metal Nanoclusters as an Emerging Optical Probe for Sensor Development. Chemistry - an Asian Journal, 2013, 8, 858-871.	3.3	299
23	Toward Understanding the Growth Mechanism: Tracing All Stable Intermediate Species from Reduction of Au(I)–Thiolate Complexes to Evolution of Au ₂₅ Nanoclusters. Journal of the American Chemical Society, 2014, 136, 10577-10580.	13.7	294
24	Fe ₂ O ₃ Nanoneedles on Ultrafine Nickel Nanotube Arrays as Efficient Anode for Highâ€Performance Asymmetric Supercapacitors. Advanced Functional Materials, 2017, 27, 1606728.	14.9	284
25	Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coordination Chemistry Reviews, 2016, 322, 1-29.	18.8	281
26	Functionalization of metal nanoclusters for biomedical applications. Analyst, The, 2016, 141, 3126-3140.	3.5	279
27	Atomicâ€Precision Gold Clusters for NIRâ€Ħ Imaging. Advanced Materials, 2019, 31, e1901015.	21.0	279
28	Balancing the Rate of Cluster Growth and Etching for Gramâ€6cale Synthesis of Thiolateâ€Protected Au ₂₅ Nanoclusters with Atomic Precision. Angewandte Chemie - International Edition, 2014, 53, 4623-4627.	13.8	276
29	Scalable and Precise Synthesis of Thiolated Au _{10–12} , Au ₁₅ , Au ₁₈ , and Au ₂₅ Nanoclusters via pH Controlled CO Reduction. Chemistry of Materials, 2013, 25, 946-952.	6.7	238
30	Highly luminescent silver nanoclusters with tunable emissions: cyclic reduction–decomposition synthesis and antimicrobial properties. NPG Asia Materials, 2013, 5, e39-e39.	7.9	237
31	Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors. Scientific Reports, 2013, 3, 2978.	3.3	234
32	Directing Assembly and Disassembly of 2D MoS ₂ Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 15286-15296.	8.0	232
33	Understanding seed-mediated growth of gold nanoclusters at molecular level. Nature Communications, 2017, 8, 927.	12.8	228
34	Metabolizable Bi ₂ Se ₃ Nanoplates: Biodistribution, Toxicity, and Uses for Cancer Radiation Therapy and Imaging. Advanced Functional Materials, 2014, 24, 1718-1729.	14.9	226
35	Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance. Scientific Reports, 2015, 5, 8669.	3.3	212
36	Highly Luminescent Thiolated Gold Nanoclusters Impregnated in Nanogel. Chemistry of Materials, 2016, 28, 4009-4016.	6.7	212

#	Article	IF	CITATIONS
37	Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters. Coordination Chemistry Reviews, 2018, 368, 60-79.	18.8	209
38	Lowâ€Dimensional Transition Metal Dichalcogenide Nanostructures Based Sensors. Advanced Functional Materials, 2016, 26, 7034-7056.	14.9	208
39	Bio-NCs – the marriage of ultrasmall metal nanoclusters with biomolecules. Nanoscale, 2014, 6, 13328-13347.	5.6	199
40	Optimization of High-Yield Biological Synthesis of Single-Crystalline Gold Nanoplates. Journal of Physical Chemistry B, 2005, 109, 15256-15263.	2.6	197
41	Unraveling the Impact of Gold(I)–Thiolate Motifs on the Aggregationâ€Induced Emission of Gold Nanoclusters. Angewandte Chemie - International Edition, 2020, 59, 9934-9939.	13.8	196
42	Back to Basics: Exploiting the Innate Physicoâ€chemical Characteristics of Nanomaterials for Biomedical Applications. Advanced Functional Materials, 2014, 24, 5936-5955.	14.9	192
43	Integrated Hierarchical Carbon Flake Arrays with Hollow Pâ€Doped CoSe ₂ Nanoclusters as an Advanced Bifunctional Catalyst for Zn–Air Batteries. Advanced Functional Materials, 2018, 28, 1804846.	14.9	192
44	Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale, 2014, 6, 157-161.	5.6	186
45	Aurophilic Interactions in the Selfâ€Assembly of Gold Nanoclusters into Nanoribbons with Enhanced Luminescence. Angewandte Chemie - International Edition, 2019, 58, 8139-8144.	13.8	185
46	Synthesis of Single-Crystalline Gold Nanoplates in Aqueous Solutions through Biomineralization by Serum Albumin Protein. Journal of Physical Chemistry C, 2007, 111, 10226-10232.	3.1	179
47	Hierarchical heterostructures of Ag nanoparticles decorated MnO ₂ nanowires as promising electrodes for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 1216-1221.	10.3	179
48	Monodisperse Icosahedral Ag, Au, and Pd Nanoparticles: Size Control Strategy and Superlattice Formation. ACS Nano, 2009, 3, 139-148.	14.6	175
49	Engineering gold-based radiosensitizers for cancer radiotherapy. Materials Horizons, 2017, 4, 817-831.	12.2	173
50	Engineering Functional Metal Materials at the Atomic Level. Advanced Materials, 2018, 30, e1802751.	21.0	170
51	Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters. Biomaterials, 2015, 39, 234-248.	11.4	169
52	Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters. Analytical Chemistry, 2016, 88, 820-825.	6.5	163
53	Mechanistic exploration and controlled synthesis of precise thiolate-gold nanoclusters. Coordination Chemistry Reviews, 2016, 329, 1-15.	18.8	161
54	The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials, 2014, 35, 6707-6715.	11.4	158

#	Article	IF	CITATIONS
55	Observation of Cluster Size Growth in CO-Directed Synthesis of Au ₂₅ (SR) ₁₈ Nanoclusters. ACS Nano, 2012, 6, 7920-7927.	14.6	157
56	A New Class of NIRâ€II Gold Nanoclusterâ€Based Protein Biolabels for Inâ€Vivo Tumorâ€Targeted Imaging. Angewandte Chemie - International Edition, 2021, 60, 1306-1312.	13.8	155
57	Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis. International Journal of Biochemistry and Cell Biology, 2015, 59, 193-202.	2.8	148
58	The support effect on the size and catalytic activity of thiolated Au ₂₅ nanoclusters as precatalysts. Nanoscale, 2015, 7, 6325-6333.	5.6	142
59	Synthesis of Ag@AgAu Metal Core/Alloy Shell Bimetallic Nanoparticles with Tunable Shell Compositions by a Galvanic Replacement Reaction. Small, 2008, 4, 1067-1071.	10.0	139
60	Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Research, 2014, 7, 301-307.	10.4	139
61	Introducing Amphiphilicity to Noble Metal Nanoclusters via Phase-Transfer Driven Ion-Pairing Reaction. Journal of the American Chemical Society, 2015, 137, 2128-2136.	13.7	139
62	Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries. Progress in Natural Science: Materials International, 2012, 22, 572-584.	4.4	137
63	Monodispersity control in the synthesis of monometallic and bimetallic quasi-spherical gold and silver nanoparticles. Nanoscale, 2010, 2, 1962.	5.6	134
64	Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate, 2021, 2, 114-132.	9.9	133
65	Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters. RSC Advances, 2014, 4, 60581-60596.	3.6	128
66	Boiling water synthesis of ultrastable thiolated silver nanoclusters with aggregation-induced emission. Chemical Communications, 2015, 51, 15165-15168.	4.1	128
67	Ligand Design in Ligandâ€Protected Gold Nanoclusters. Small, 2021, 17, e2004381.	10.0	128
68	Electrospray Ionization Mass Spectrometry: A Powerful Platform for Nobleâ€Metal Nanocluster Analysis. Angewandte Chemie - International Edition, 2019, 58, 11967-11977.	13.8	125
69	Directed Self-Assembly of Ultrasmall Metal Nanoclusters. , 2019, 1, 237-248.		124
70	Direct extraction of specific pharmacophoric flavonoids from gingko leaves using a molecularly imprinted polymer for quercetin. Journal of Chromatography A, 2001, 934, 1-11.	3.7	122
71	Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction. Nature Communications, 2017, 8, 1555.	12.8	122
72	The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes. Nanoscale, 2013, 5, 3834.	5.6	120

#	Article	IF	CITATIONS
73	Bacteriophage Polysaccharide Depolymerases and Biomedical Applications. BioDrugs, 2014, 28, 265-274.	4.6	120
74	Highly luminescent Ag+ nanoclusters for Hg2+ ion detection. Nanoscale, 2012, 4, 1968.	5.6	118
75	Engineering noble metal nanomaterials for environmental applications. Nanoscale, 2015, 7, 7502-7519.	5.6	116
76	Surface Ligand Chemistry of Gold Nanoclusters Determines Their Antimicrobial Ability. Chemistry of Materials, 2018, 30, 2800-2808.	6.7	115
77	Supported Atomically-Precise Gold Nanoclusters for Enhanced Flow-through Electro-Fenton. Environmental Science & Technology, 2020, 54, 5913-5921.	10.0	113
78	A graphene-based electrochemical filter for water purification. Journal of Materials Chemistry A, 2014, 2, 16554-16562.	10.3	108
79	Molecular reactivity of thiolate-protected noble metal nanoclusters: synthesis, self-assembly, and applications. Chemical Science, 2021, 12, 99-127.	7.4	108
80	Novel Theranostic DNA Nanoscaffolds for the Simultaneous Detection and Killing of <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> . ACS Applied Materials & Interfaces, 2014, 6, 21822-21831.	8.0	107
81	Amphiphilic Polymeric Nanocarriers with Luminescent Gold Nanoclusters for Concurrent Bioimaging and Controlled Drug Release. Advanced Functional Materials, 2013, 23, 4324-4331.	14.9	105
82	High-Yield Synthesis of Complex Gold Nanostructures in a Fungal System. Journal of Physical Chemistry C, 2007, 111, 16858-16865.	3.1	103
83	First Succinyl-Proteome Profiling of Extensively Drug-Resistant <i>Mycobacterium tuberculosis</i> Revealed Involvement of Succinylation in Cellular Physiology. Journal of Proteome Research, 2015, 14, 107-119.	3.7	103
84	Recent Advances in the Synthesis and Applications of Ultrasmall Bimetallic Nanoclusters. Particle and Particle Systems Characterization, 2015, 32, 613-629.	2.3	102
85	Energy Transfer between Conjugated-Oligoelectrolyte-Substituted POSS and Gold Nanocluster for Multicolor Intracellular Detection of Mercury Ion. Journal of Physical Chemistry C, 2011, 115, 13069-13075.	3.1	100
86	Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries. Journal of Power Sources, 2012, 212, 28-34.	7.8	100
87	Engineering the architectural diversity of heterogeneous metallic nanocrystals. Nature Communications, 2013, 4, 1454.	12.8	100
88	Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters. Nanoscale, 2013, 5, 4606.	5.6	100
89	Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles. Journal of Hazardous Materials, 2015, 297, 146-152.	12.4	99
90	Hierarchical TiO2-B nanowire@α-Fe2O3 nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries. Nano Research, 2014, 7, 1797-1808.	10.4	97

#	Article	IF	CITATIONS
91	Synthesis of Monodisperse Agï£;Au Alloy Nanoparticles with Independently Tunable Morphology, Composition, Size, and Surface Chemistry and Their 3â€D Superlattices. Advanced Functional Materials, 2009, 19, 1387-1398.	14.9	96
92	Golden Carbon Nanotube Membrane for Continuous Flow Catalysis. Industrial & Engineering Chemistry Research, 2017, 56, 2999-3007.	3.7	92
93	Engineering Ultrasmall Metal Nanoclusters as Promising Theranostic Agents. Trends in Chemistry, 2020, 2, 665-679.	8.5	92
94	Unexpected extensive lysine acetylation in the trump-card antibiotic producer Streptomyces roseosporus revealed by proteome-wide profiling. Journal of Proteomics, 2014, 106, 260-269.	2.4	91
95	Interfacial engineering of gold nanoclusters for biomedical applications. Materials Horizons, 2020, 7, 2596-2618.	12.2	91
96	Cyclodextrin–gold nanocluster decorated TiO ₂ enhances photocatalytic decomposition of organic pollutants. Journal of Materials Chemistry A, 2018, 6, 1102-1108.	10.3	90
97	Molecular-Scale Ligand Effects in Small Gold–Thiolate Nanoclusters. Journal of the American Chemical Society, 2018, 140, 15430-15436.	13.7	90
98	Synthesis of Water-Soluble [Au ₂₅ (SR) ₁₈] ^{â^'} Using a Stoichiometric Amount of NaBH ₄ . Journal of the American Chemical Society, 2018, 140, 11370-11377.	13.7	90
99	Rapid adsorption removal of arsenate by hydrous cerium oxide–graphene composite. RSC Advances, 2015, 5, 64983-64990.	3.6	89
100	Presentation matters: Identity of gold nanocluster capping agent governs intracellular uptake and cell metabolism. Nano Research, 2014, 7, 805-815.	10.4	88
101	Revealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approach. Nature Communications, 2018, 9, 1979.	12.8	88
102	Gold nanocluster sensitized TiO ₂ nanotube arrays for visible-light driven photoelectrocatalytic removal of antibiotic tetracycline. Nanoscale, 2016, 8, 10145-10151.	5.6	87
103	Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent advances in catalysis and biomedical applications. Nano Today, 2021, 36, 101053.	11.9	86
104	Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nature Communications, 2022, 13, 1596.	12.8	86
105	Nanostructured Iron Oxide/Hydroxideâ€Based Electrode Materials for Supercapacitors. ChemNanoMat, 2016, 2, 588-600.	2.8	82
106	Counterionâ€Assisted Shaping of Nanocluster Supracrystals. Angewandte Chemie - International Edition, 2015, 54, 184-189.	13.8	81
107	Nitrogen-doped graphene nanosheets as reactive water purification membranes. Nano Research, 2016, 9, 1983-1993.	10.4	81
108	Antibiotic drugs targeting bacterial RNAs. Acta Pharmaceutica Sinica B, 2014, 4, 258-265.	12.0	79

#	Article	IF	CITATIONS
109	Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning. Scientific Reports, 2014, 4, 3969.	3.3	79
110	Colloidal Synthesis of Plasmonic Metallic Nanoparticles. Plasmonics, 2009, 4, 9-22.	3.4	78
111	Convenient purification of gold clusters by co-precipitation for improved sensing of hydrogen peroxide, mercury ions and pesticides. Chemical Communications, 2014, 50, 5703.	4.1	78
112	Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H ₂ O ₂ . Environmental Science: Water Research and Technology, 2015, 1, 769-778.	2.4	78
113	Hydrophilic Mineral Coating of Membrane Substrate for Reducing Internal Concentration Polarization (ICP) in Forward Osmosis. Scientific Reports, 2016, 6, 19593.	3.3	77
114	Structure and formation of highly luminescent protein-stabilized gold clusters. Chemical Science, 2018, 9, 2782-2790.	7.4	76
115	Design and mechanistic study of a novel gold nanocluster-based drug delivery system. Nanoscale, 2018, 10, 10166-10172.	5.6	76
116	Insights into the effect of surface ligands on the optical properties of thiolated Au ₂₅ nanoclusters. Chemical Communications, 2016, 52, 5234-5237.	4.1	75
117	Composition-Dependent Antimicrobial Ability of Full-Spectrum Au _{<i>x</i>} Ag _{25–<i>x</i>} Alloy Nanoclusters. ACS Nano, 2020, 14, 11533-11541.	14.6	75
118	Twoâ€Phase Synthesis of Small Thiolateâ€Protected Au ₁₅ and Au ₁₈ Nanoclusters. Small, 2013, 9, 2696-2701.	10.0	74
119	Increasing the Potential Interacting Area of Nanomedicine Enhances Its Homotypic Cancer Targeting Efficacy. ACS Nano, 2020, 14, 3259-3271.	14.6	74
120	Aggregation-induced emission in luminescent metal nanoclusters. National Science Review, 2021, 8, nwaa208.	9.5	74
121	Real Time Monitoring of the Dynamic Intracluster Diffusion of Single Gold Atoms into Silver Nanoclusters. Journal of the American Chemical Society, 2019, 141, 18977-18983.	13.7	73
122	Fast Synthesis of Thiolated Au ₂₅ Nanoclusters via Protection–Deprotection Method. Journal of Physical Chemistry Letters, 2012, 3, 2310-2314.	4.6	71
123	Synergistic Antimicrobial Titanium Carbide (MXene) Conjugated with Gold Nanoclusters. Advanced Healthcare Materials, 2020, 9, e2001007.	7.6	71
124	Tailoring the Selectivity of Bimetallic Copper–Palladium Nanoalloys for Electrocatalytic Reduction of CO ₂ to CO. ACS Applied Energy Materials, 2018, 1, 883-890.	5.1	68
125	Architectural Design of Heterogeneous Metallic Nanocrystals—Principles and Processes. Accounts of Chemical Research, 2014, 47, 3530-3540.	15.6	66
126	Enhancing stability through ligand-shell engineering: A case study with Au25(SR)18 nanoclusters. Nano Research, 2015, 8, 3488-3495.	10.4	66

#	Article	IF	CITATIONS
127	Unique size-dependent nanocatalysis revealed at the single atomically precise gold cluster level. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10588-10593.	7.1	65
128	Tuning the Crystallinity of Au Nanoparticles. Small, 2010, 6, 523-527.	10.0	64
129	Protein-based fluorescent metal nanoclusters for small molecular drug screening. Chemical Communications, 2014, 50, 13805-13808.	4.1	64
130	Shining photocatalysis by gold-based nanomaterials. Nano Energy, 2021, 88, 106306.	16.0	64
131	Tuning the Accessibility and Activity of Au ₂₅ (SR) ₁₈ Nanocluster Catalysts through Ligand Engineering. Chemistry - A European Journal, 2016, 22, 14816-14820.	3.3	63
132	Control of single-ligand chemistry on thiolated Au25 nanoclusters. Nature Communications, 2020, 11, 5498.	12.8	63
133	Mycobacterium tuberculosis PE_PGRS41 Enhances the Intracellular Survival of M. smegmatis within Macrophages Via Blocking Innate Immunity and Inhibition of Host Defense. Scientific Reports, 2017, 7, 46716.	3.3	62
134	Conductive 3D sponges for affordable and highly-efficient water purification. Nanoscale, 2018, 10, 4771-4778.	5.6	61
135	On-line solid-phase extraction of ceramides from yeast with ceramide III imprinted monolith. Journal of Chromatography A, 2003, 984, 173-183.	3.7	60
136	Overcoming bacterial physical defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioactive Materials, 2021, 6, 941-950.	15.6	60
137	Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates. Nature Communications, 2018, 9, 2379.	12.8	60
138	Tailoring the protein conformation to synthesize different-sized gold nanoclusters. Chemical Communications, 2013, 49, 9740.	4.1	59
139	Facile synthesis of water-soluble Au25–xAgx nanoclusters protected by mono- and bi-thiolate ligands. Chemical Communications, 2014, 50, 7459.	4.1	59
140	In Situ Fabrication of Flexible, Thermally Stable, Large-Area, Strongly Luminescent Copper Nanocluster/Polymer Composite Films. Chemistry of Materials, 2017, 29, 10206-10211.	6.7	58
141	Ultrasensitive IgG quantification using DNA nano-pyramids. NPG Asia Materials, 2014, 6, e112-e112.	7.9	56
142	Platinum-based heterogeneous nanomaterials via wet-chemistry approaches toward electrocatalytic applications. Advances in Colloid and Interface Science, 2016, 230, 29-53.	14.7	56
143	Storage of Gold Nanoclusters in Muscle Leads to their Biphasic in Vivo Clearance. Small, 2015, 11, 1683-1690.	10.0	55
144	Soft, Oxidative Stripping of Alkyl Thiolate Ligands from Hydroxyapatiteâ€6upported Gold Nanoclusters for Oxidation Reactions. Chemistry - an Asian Journal, 2016, 11, 532-539.	3.3	55

#	Article	IF	CITATIONS
145	Engineering ultrasmall metal nanoclusters for photocatalytic and electrocatalytic applications. Nanoscale, 2019, 11, 20437-20448.	5.6	55
146	Silver Dopingâ€Induced Luminescence Enhancement and Redâ€Shift of Gold Nanoclusters with Aggregationâ€Induced Emission. Chemistry - an Asian Journal, 2019, 14, 765-769.	3.3	55
147	Toward greener synthesis of gold nanomaterials: From biological to biomimetic synthesis. Coordination Chemistry Reviews, 2021, 426, 213540.	18.8	55
148	Toxicity profiling of water contextual zinc oxide, silver, and titanium dioxide nanoparticles in human oral and gastrointestinal cell systems. Environmental Toxicology, 2015, 30, 1459-1469.	4.0	54
149	Nanoâ€īiO ₂ Drives Epithelial–Mesenchymal Transition in Intestinal Epithelial Cancer Cells. Small, 2018, 14, e1800922.	10.0	53
150	<i>Mycobacterium Tuberculosis</i> PPE Family Protein Rv1808 Manipulates Cytokines Profile via Co-Activation of MAPK and NF-I®B Signaling Pathways. Cellular Physiology and Biochemistry, 2014, 33, 273-288.	1.6	52
151	Ligand-protected atomically precise gold nanoclusters as model catalysts for oxidation reactions. Chemical Communications, 2020, 56, 1163-1174.	4.1	52
152	Interleukin-10 Family and Tuberculosis: An Old Story Renewed. International Journal of Biological Sciences, 2016, 12, 710-717.	6.4	51
153	Synergistic Antimicrobial Capability of Magnetically Oriented Graphene Oxide Conjugated with Gold Nanoclusters. Advanced Functional Materials, 2019, 29, 1904603.	14.9	51
154	Regulatory and pathogenesis roles of Mycobacterium Lrp/AsnC family transcriptional factors. Journal of Cellular Biochemistry, 2011, 112, 2655-2662.	2.6	50
155	An Effective Design of Electrically Conducting Thin-Film Composite (TFC) Membranes for Bio and Organic Fouling Control in Forward Osmosis (FO). Environmental Science & Technology, 2016, 50, 10596-10605.	10.0	50
156	Engineering Noble Metal Nanomaterials for Pollutant Decomposition. Industrial & Engineering Chemistry Research, 2020, 59, 20561-20581.	3.7	50
157	Deep Learning Accelerated Gold Nanocluster Synthesis. Advanced Intelligent Systems, 2019, 1, 1900029.	6.1	49
158	Electrocatalysis of gold-based nanoparticles and nanoclusters. Materials Horizons, 2021, 8, 1657-1682.	12.2	49
159	Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells. Nanoscale, 2016, 8, 9614-9620.	5.6	48
160	Interactions of Metal Nanoclusters with Light: Fundamentals and Applications. Advanced Materials, 2022, 34, e2103918.	21.0	48
161	Assembly of Nanoions via Electrostatic Interactions: Ion-Like Behavior of Charged Noble Metal Nanoclusters. Scientific Reports, 2014, 4, 3848.	3.3	47
162	l-Serine potentiates fluoroquinolone activity against <i>Escherichia coli</i> by enhancing endogenous reactive oxygen species production. Journal of Antimicrobial Chemotherapy, 2016, 71, 2192-2199.	3.0	47

#	Article	IF	CITATIONS
163	Hollow Mesoporous Silica Nanocarriers with Multifunctional Capping Agents for In Vivo Cancer Imaging and Therapy. Small, 2016, 12, 360-370.	10.0	47
164	Ligands Modulate Reaction Pathway in the Hydrogenation of 4â€Nitrophenol Catalyzed by Gold Nanoclusters. ChemCatChem, 2018, 10, 395-402.	3.7	47
165	Engineering Metal Nanoclusters for Targeted Therapeutics: From Targeting Strategies to Therapeutic Applications. Advanced Functional Materials, 2021, 31, 2105662.	14.9	47
166	Biology of IL-27 and its Role in the Host Immunity against <i>Mycobacterium Tuberculosis</i> . International Journal of Biological Sciences, 2015, 11, 168-175.	6.4	46
167	Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity. Nano Research, 2020, 13, 203-208.	10.4	46
168	In Situ Synthesis of Bismuth Nanoclusters within Carbon Nanoâ€Bundles from Metal–Organic Framework for Chlorideâ€Driven Electrochemical Deionization. Advanced Functional Materials, 2022, 32, .	14.9	46
169	PE11 (Rv1169c) selectively alters fatty acid components of Mycobacterium smegmatis and host cell interleukin-6 level accompanied with cell death. Frontiers in Microbiology, 2015, 6, 613.	3.5	44
170	Proteome-wide Lysine Glutarylation Profiling of theMycobacterium tuberculosisH37Rv. Journal of Proteome Research, 2016, 15, 1379-1385.	3.7	44
171	Comparative genomic structures of <i>Mycobacterium</i> CRISPRâ€Cas. Journal of Cellular Biochemistry, 2012, 113, 2464-2473.	2.6	42
172	Recent advances in noble metal-based nanocomposites for electrochemical reactions. Materials Today Energy, 2017, 6, 115-127.	4.7	42
173	Open hollow Co–Pt clusters embedded in carbon nanoflake arrays for highly efficient alkaline water splitting. Journal of Materials Chemistry A, 2018, 6, 20214-20223.	10.3	42
174	Decoupling the CO-Reduction Protocol to Generate Luminescent Au ₂₂ (SR) ₁₈ Nanocluster. Journal of Physical Chemistry C, 2015, 119, 10910-10918.	3.1	40
175	Effect of ligand structure on the size control of mono- and bi-thiolate-protected silver nanoclusters. Chemical Communications, 2017, 53, 9697-9700.	4.1	40
176	Observing antimicrobial process with traceable gold nanoclusters. Nano Research, 2021, 14, 1026-1033.	10.4	40
177	Guiding Principles in the Galvanic Replacement Reaction of an Underpotentially Deposited Metal Layer for Site-Selective Deposition and Shape and Size Control of Satellite Nanocrystals. Chemistry of Materials, 2013, 25, 4746-4756.	6.7	38
178	Reversible isomerization of metal nanoclusters induced by intermolecular interaction. CheM, 2021, 7, 2227-2244.	11.7	38
179	Mycobacterium tuberculosis Rv3402c Enhances Mycobacterial Survival within Macrophages and Modulates the Host Pro-Inflammatory Cytokines Production via NF-Kappa B/ERK/p38 Signaling. PLoS ONE, 2014, 9, e94418.	2.5	36
180	Probing the Microporous Structure of Silica Shell Via Aggregationâ€Induced Emission in Au(I)â€Thiolate@SiO ₂ Nanoparticle. Small, 2016, 12, 6537-6541.	10.0	36

#	Article	IF	CITATIONS
181	Mycobacterium tuberculosis PE_PGRS18 enhances the intracellular survival of M. smegmatis via altering host macrophage cytokine profiling and attenuating the cell apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 502-509.	4.9	36
182	Unraveling the Impact of Cold(I)–Thiolate Motifs on the Aggregationâ€Induced Emission of Gold Nanoclusters. Angewandte Chemie, 2020, 132, 10020-10025.	2.0	36
183	Regulation of host cell pyroptosis and cytokines production by Mycobacterium tuberculosis effector PPE60 requires LUBAC mediated NF-κB signaling. Cellular Immunology, 2019, 335, 41-50.	3.0	35
184	The <i>in situ</i> synthesis of silver nanoclusters inside a bacterial cellulose hydrogel for antibacterial applications. Journal of Materials Chemistry B, 2020, 8, 4846-4850.	5.8	35
185	Bright Future of Gold Nanoclusters in Theranostics. ACS Applied Materials & Interfaces, 2021, 13, 49581-49588.	8.0	35
186	Bis-Schiff base linkage-triggered highly bright luminescence of gold nanoclusters in aqueous solution at the single-cluster level. Nature Communications, 2022, 13, .	12.8	35
187	Reciprocal Response of Human Oral Epithelial Cells to Internalized Silica Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 784-793.	2.3	34
188	Phage Based Green Chemistry for Gold Ion Reduction and Gold Retrieval. ACS Applied Materials & Interfaces, 2014, 6, 910-917.	8.0	34
189	Surface Reaction Route To Increase the Loading of Antimicrobial Ag Nanoparticles in Forward Osmosis Membranes. ACS Sustainable Chemistry and Engineering, 2015, 3, 2959-2966.	6.7	34
190	<i>Mycobacterium tuberculosis</i> PPE32 promotes cytokines production and host cell apoptosis through caspase cascade accompanying with enhanced ER stress response. Oncotarget, 2016, 7, 67347-67359.	1.8	34
191	Cancer Biomarker-Triggered Disintegrable DNA Nanogels for Intelligent Drug Delivery. Nano Letters, 2020, 20, 8399-8407.	9.1	33
192	General Method for Extended Metal Nanowire Synthesis:  Ethanol Induced Self-Assembly. Journal of Physical Chemistry C, 2007, 111, 17158-17162.	3.1	32
193	Mycobacteriophage SWU1 gp39 can potentiate multiple antibiotics against Mycobacterium via altering the cell wall permeability. Scientific Reports, 2016, 6, 28701.	3.3	32
194	Heating or Cooling: Temperature Effects on the Synthesis of Atomically Precise Gold Nanoclusters. Journal of Physical Chemistry C, 2017, 121, 10743-10751.	3.1	32
195	Microbial synthesis of Pd–Pt alloy nanoparticles using <i>Shewanella oneidensis</i> MR-1 with enhanced catalytic activity for nitrophenol and azo dyes reduction. Nanotechnology, 2019, 30, 065607.	2.6	32
196	Reactive oxygen species play a dominant role in all pathways of rapid quinolone-mediated killing. Journal of Antimicrobial Chemotherapy, 2020, 75, 576-585.	3.0	32
197	Revealing the etching process of water-soluble Au25 nanoclusters at the molecular level. Nature Communications, 2021, 12, 3212.	12.8	32
198	Traveling through the Desalting Column Spontaneously Transforms Thiolated Ag Nanoclusters from Nonluminescent to Highly Luminescent. Journal of Physical Chemistry Letters, 2013, 4, 1811-1815.	4.6	31

#	Article	IF	CITATIONS
199	A photo-bactericidal thin film composite membrane for forward osmosis. Journal of Materials Chemistry A, 2015, 3, 6781-6786.	10.3	31
200	Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level. Scientific Reports, 2016, 6, 19695.	3.3	31
201	Mycobacterium tuberculosis PE13 (Rv1195) manipulates the host cell fate via p38-ERK-NF-κB axis and apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2016, 21, 795-808.	4.9	31
202	Phosphorylation control of protein tyrosine phosphatase A activity in <i>Mycobacterium tuberculosis</i> . FEBS Letters, 2015, 589, 326-331.	2.8	30
203	Mycobacterium tuberculosis effectors interfering host apoptosis signaling. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 883-891.	4.9	30
204	Template-Assisted Fabrication of Thin-Film Composite Forward-Osmosis Membrane with Controllable Internal Concentration Polarization. Industrial & Engineering Chemistry Research, 2016, 55, 5327-5334.	3.7	30
205	Water-soluble metal nanoclusters: recent advances in molecular-level exploration and biomedical applications. Dalton Transactions, 2019, 48, 10385-10392.	3.3	30
206	L-lysine potentiates aminoglycosides against <i>Acinetobacter baumannii</i> via regulation of proton motive force and antibiotics uptake. Emerging Microbes and Infections, 2020, 9, 639-650.	6.5	30
207	The Roles of Bacterial GCN5-Related N-acetyltransferases. Critical Reviews in Eukaryotic Gene Expression, 2014, 24, 77-87.	0.9	29
208	MicroRNAs play big roles in modulating macrophages response toward mycobacteria infection. Infection, Genetics and Evolution, 2016, 45, 378-382.	2.3	29
209	Aurophilic Interactions in the Selfâ€Assembly of Gold Nanoclusters into Nanoribbons with Enhanced Luminescence. Angewandte Chemie, 2019, 131, 8223-8228.	2.0	29
210	Cluster Materials as Traceable Antibacterial Agents. Accounts of Materials Research, 2021, 2, 1104-1116.	11.7	29
211	Exploring Metal Nanoclusters for Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2015, 7, 5488-5496.	8.0	28
212	Mycobacterium tuberculosis Major Facilitator Superfamily Transporters. Journal of Membrane Biology, 2017, 250, 573-585.	2.1	27
213	Mycobacterium tuberculosis PPE44 (Rv2770c) is involved in response to multiple stresses and promotes the macrophage expression of IL-12 p40 and IL-6 via the p38, ERK, and NF-I®B signaling axis. International Immunopharmacology, 2017, 50, 319-329.	3.8	26
214	Navigating through the maze of TLR2 mediated signaling network for better mycobacterium infection control. Biochimie, 2014, 102, 1-8.	2.6	24
215	Synthesis of thiolate-protected Au nanoparticles revisited: U-shape trend between the size of nanoparticles and thiol-to-Au ratio. Chemical Communications, 2016, 52, 9522-9525.	4.1	24
216	Understanding the Optical Properties of Au@Ag Bimetallic Nanoclusters through Time-Resolved and Nonlinear Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 24368-24379.	3.1	24

#	Article	IF	CITATIONS
217	Rational Design of High-Performance Continuous-Flow Microreactors Based on Gold Nanoclusters and Graphene for Catalysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 15425-15433.	6.7	24
218	Molecular Mechanisms Underlying the Function Diversity of ArsR Family Metalloregulator. Critical Reviews in Eukaryotic Gene Expression, 2017, 27, 19-35.	0.9	24
219	Mycobacterium Biofilms: Factors Involved in Development, Dispersal, and Therapeutic Strategies Against Biofilm-Relevant Pathogens. Critical Reviews in Eukaryotic Gene Expression, 2014, 24, 269-279.	0.9	23
220	Carbon Monoxide: A Mild and Efficient Reducing Agent towards Atomically Precise Gold Nanoclusters. Chemical Record, 2016, 16, 1761-1771.	5.8	23
221	Emerging nanotechnology for environmental applications. Nanotechnology Reviews, 2016, 5, 1-2.	5.8	23
222	Distribution and function of prophage phiRv1 and phiRv2 amongMycobacterium tuberculosiscomplex. Journal of Biomolecular Structure and Dynamics, 2016, 34, 233-238.	3.5	23
223	Proteomic analysis of lysine succinylation of the human pathogen Histoplasma capsulatum. Journal of Proteomics, 2017, 154, 109-117.	2.4	23
224	Mycobacterium tuberculosis PE31 (Rv3477) Attenuates Host Cell Apoptosis and Promotes Recombinant M. smegmatis Intracellular Survival via Up-regulating GTPase Guanylate Binding Protein-1. Frontiers in Cellular and Infection Microbiology, 2020, 10, 40.	3.9	23
225	Template-Free Synthesis of Porous Platinum Networks of Different Morphologies. Langmuir, 2009, 25, 6454-6459.	3.5	22
226	Polyphosphate Deficiency Affects the Sliding Motility and Biofilm Formation of Mycobacterium smegmatis. Current Microbiology, 2011, 63, 470-476.	2.2	22
227	Solvent Controls the Formation of Au ₂₉ (SR) ₂₀ Nanoclusters in the COâ€Reduction Method. Particle and Particle Systems Characterization, 2014, 31, 652-656.	2.3	22
228	Resistance and integron characterization of Acinetobacter baumannii in a teaching hospital in Chongqing, China. New Microbes and New Infections, 2015, 8, 103-108.	1.6	22
229	The Innermost Three Gold Atoms Are Indispensable To Maintain the Structure of the Au ₁₈ (SR) ₁₄ Cluster. Journal of Physical Chemistry C, 2016, 120, 22096-22102.	3.1	22
230	Characterization and function of Mycobacterium tuberculosis H37Rv Lipase Rv1076 (LipU). Microbiological Research, 2017, 196, 7-16.	5.3	22
231	PE_PGRS62 promotes the survival of <i>Mycobacterium smegmatis</i> within macrophages via disrupting ER stressâ€mediated apoptosis. Journal of Cellular Physiology, 2019, 234, 19774-19784.	4.1	22
232	Diversification of Metallic Molecules through Derivatization Chemistry of Au ₂₅ Nanoclusters. Accounts of Chemical Research, 2021, 54, 4142-4153.	15.6	22
233	Synthesis of shield-like singly twinned high-index Au nanoparticles. Nanoscale, 2011, 3, 1497.	5.6	21
234	Mycobacterium tuberculosis Rv1152 is a Novel GntR Family Transcriptional Regulator Involved in Intrinsic Vancomycin Resistance and is a Potential Vancomycin Adjuvant Target. Scientific Reports, 2016. 6. 28002.	3.3	21

#	Article	IF	CITATIONS
235	Global profiling of lysine acetylation in human histoplasmosis pathogen Histoplasma capsulatum. International Journal of Biochemistry and Cell Biology, 2016, 73, 1-10.	2.8	21
236	Unraveling the molecular mechanism of photosynthetic toxicity of highly fluorescent silver nanoclusters to Scenedesmus obliquus. Scientific Reports, 2017, 7, 16432.	3.3	21
237	<i>Mycobacterium tuberculosis</i> PE_PGRS17 Promotes the Death of Host Cell and Cytokines Secretion via Erk Kinase Accompanying with Enhanced Survival of Recombinant <i>Mycobacterium smegmatis</i> . Journal of Interferon and Cytokine Research, 2013, 33, 452-458.	1.2	20
238	Uptake and effect of highly fluorescent silver nanoclusters on Scenedesmus obliquus. Chemosphere, 2016, 153, 322-331.	8.2	20
239	Development of electro-active forward osmosis membranes to remove phenolic compounds and reject salts. Environmental Science: Water Research and Technology, 2017, 3, 139-146.	2.4	20
240	Confined Unimolecular Micelles for Precisely Controlled In Situ Synthesis of Stable Ultrasmall Metal Nanocluster Assemblies. Chemistry of Materials, 2021, 33, 5067-5075.	6.7	20
241	Cytokine storm in tuberculosis and IL-6 involvement. Infection, Genetics and Evolution, 2022, 97, 105166.	2.3	20
242	Prophage-like elements present in Mycobacteriumgenomes. BMC Genomics, 2014, 15, 243.	2.8	19
243	Converting ultrafine silver nanoclusters to monodisperse silver sulfide nanoparticles via a reversible phase transfer protocol. Nano Research, 2016, 9, 942-950.	10.4	19
244	The effect of Mycobacterium tuberculosis CRISPR-associated Cas2 (Rv2816c) on stress response genes expression, morphology and macrophage survival of Mycobacterium smegmatis. Infection, Genetics and Evolution, 2016, 40, 295-301.	2.3	19
245	<i>Burkholderia pseudomallei</i> interferes with host lipid metabolism via <i>NR1D2</i> -mediated <i>PNPLA2/ATGL</i> suppression to block autophagy-dependent inhibition of infection. Autophagy, 2021, 17, 1918-1933.	9.1	19
246	Surface Engineering Assisted Size and Structure Modulation of Gold Nanoclusters by Ionic Liquid Cations. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
247	Lysine succinylation of <i>Mycobacterium tuberculosis</i> isocitrate lyase (ICL) fine-tunes the microbial resistance to antibiotics. Journal of Biomolecular Structure and Dynamics, 2017, 35, 1030-1041.	3.5	18
248	Establishing empirical design rules of nucleic acid templates for the synthesis of silver nanoclusters with tunable photoluminescence and functionalities towards targeted bioimaging applications. Nanoscale Advances, 2020, 2, 3921-3932.	4.6	18
249	Pasteur-like Separation of Silver Nanocluster Racemates by Conglomerate Crystallization. ACS Central Science, 2020, 6, 1862-1865.	11.3	18
250	ALA_PDT Promotes Ferroptosis-Like Death of Mycobacterium abscessus and Antibiotic Sterilization via Oxidative Stress. Antioxidants, 2022, 11, 546.	5.1	18
251	Nanostructured lithium titanate and lithium titanate/carbon nanocomposite as anode materials for advanced lithium-ion batteries. Nanotechnology Reviews, 2014, 3, .	5.8	17
252	Genomic and proteomic features of mycobacteriophage SWU1 isolated from China soil. Gene, 2015, 561, 45-53.	2.2	17

#	Article	IF	CITATIONS
253	Hydride-induced ligand dynamic and structural transformation of gold nanoclusters during a catalytic reaction. Nanoscale, 2018, 10, 23113-23121.	5.6	17
254	Antimicrobial Thin-Film Composite Membranes with Chemically Decorated Ultrasmall Silver Nanoclusters. ACS Sustainable Chemistry and Engineering, 2019, 7, 14848-14855.	6.7	17
255	Expression and regulatory networks of <i>Mycobacterium tuberculosis</i> PE/PPE family antigens. Journal of Cellular Physiology, 2019, 234, 7742-7751.	4.1	17
256	Traceable Nanocluster–Prodrug Conjugate for Chemo-photodynamic Combinatorial Therapy of Non-small Cell Lung Cancer. ACS Applied Bio Materials, 2021, 4, 3232-3245.	4.6	17
257	Phosphorylation of Mycobacterium tuberculosis protein tyrosine kinase A PtkA by Ser/Thr protein kinases. Biochemical and Biophysical Research Communications, 2015, 467, 421-426.	2.1	16
258	Promotion of reversible Li+ storage in transition metal dichalcogenides by Ag nanoclusters. NPG Asia Materials, 2016, 8, e247-e247.	7.9	16
259	Mycobacterium tuberculosis rv1400c encodes functional lipase/esterase. Protein Expression and Purification, 2017, 129, 143-149.	1.3	16
260	Electrospray Ionization Mass Spectrometry: A Powerful Platform for Nobleâ€Metal Nanocluster Analysis. Angewandte Chemie, 2019, 131, 12093-12103.	2.0	16
261	Dualâ€Functional Coating of Forward Osmosis Membranes for Hydrophilization and Antimicrobial Resistance. Advanced Materials Interfaces, 2016, 3, 1500599.	3.7	15
262	Molecular Basis Underlying Host Immunity Subversion by <i>Mycobacterium tuberculosis</i> PE/PPE Family Molecules. DNA and Cell Biology, 2019, 38, 1178-1187.	1.9	15
263	<i>Mycobacterium tuberculosis metC</i> (Rv3340) derived hydrogen sulphide conferring bacteria stress survival. Journal of Drug Targeting, 2019, 27, 1004-1016.	4.4	15
264	High-Yield Synthesis of AlE-Type Au ₂₂ (SG) ₁₈ Nanoclusters through Precursor Engineering and Its pH-Dependent Size Transformation. Journal of Physical Chemistry C, 2021, 125, 4066-4076.	3.1	15
265	Ins and outs of <i>Mycobacterium tuberculosis</i> PPE family in pathogenesis and implications for novel measures against tuberculosis. Journal of Cellular Biochemistry, 2012, 113, 1087-1095.	2.6	14
266	Roles of Multifunctional COP9 Signalosome Complex in Cell Fate and Implications for Drug Discovery. Journal of Cellular Physiology, 2017, 232, 1246-1253.	4.1	14
267	The Synergistic Effect of Exogenous Glutamine and Rifampicin Against Mycobacterium Persisters. Frontiers in Microbiology, 2018, 9, 1625.	3.5	14
268	<i>Mycobacterium tuberculosis</i> Rv1473 is a novel macrolides ABC Efflux Pump regulated by WhiB7. Future Microbiology, 2019, 14, 47-59.	2.0	14
269	A New Class of NIRâ€II Gold Nanoclusterâ€Based Protein Biolabels for Inâ€Vivo Tumorâ€Targeted Imaging. Angewandte Chemie, 2021, 133, 1326-1332.	2.0	14
270	Ultrastable Hydrophilic Gold Nanoclusters Protected by Sulfonic Thiolate Ligands. Journal of Physical Chemistry C, 2021, 125, 489-497.	3.1	14

#	Article	IF	CITATIONS
271	Role of mycobacteria effectors in phagosome maturation blockage and new drug targets discovery. Journal of Cellular Biochemistry, 2011, 112, 2688-2693.	2.6	12
272	Biology of a Novel Mycobacteriophage, SWU1, Isolated from Chinese Soil as Revealed by Genomic Characteristics. Journal of Virology, 2012, 86, 10230-10231.	3.4	12
273	<i>Mycobacterium tuberculosis</i> Serine Protease Rv3668c Can Manipulate the Host–Pathogen Interaction via Erk-NF-κB Axis-Mediated Cytokine Differential Expression. Journal of Interferon and Cytokine Research, 2014, 34, 686-698.	1.2	12
274	Mycobacterium tuberculosis effectors involved in host–pathogen interaction revealed by a multiple scales integrative pipeline. Infection, Genetics and Evolution, 2015, 32, 1-11.	2.3	12
275	Mycobacterial ethambutol responsive genes and implications in antibiotics resistance. Journal of Drug Targeting, 2021, 29, 284-293.	4.4	12
276	Multiscale Assembly of [AgS 4] Tetrahedrons into Hierarchical Ag–S Networks for Robust Photonic Water. Advanced Materials, 2021, 33, 2006459.	21.0	12
277	Cucurbit[<i>n</i>]uril Supramolecular Assemblies-Regulated Charge Transfer for Luminescence Switching of Gold Nanoclusters. Journal of Physical Chemistry Letters, 2022, 13, 419-426.	4.6	12
278	Comparative Genomics of Mycobacterium tuberculosis Drug Efflux Pumps and Their Transcriptional Regulators. Critical Reviews in Eukaryotic Gene Expression, 2014, 24, 163-180.	0.9	11
279	Mycobacterium tuberculosisRv1265 promotes mycobacterial intracellular survival and alters cytokine profile of the infected macrophage. Journal of Biomolecular Structure and Dynamics, 2016, 34, 585-599.	3.5	11
280	Role of twoâ€component regulatory systems in intracellular survival of <i>Mycobacterium tuberculosis</i> . Journal of Cellular Biochemistry, 2019, 120, 12197-12207.	2.6	11
281	Mycobacterium tuberculosis Rv0426c promotes recombinant mycobacteria intracellular survival via manipulating host inflammatory cytokines and suppressing cell apoptosis. Infection, Genetics and Evolution, 2020, 77, 104070.	2.3	11
282	Transport mechanism of <i>Mycobacterium tuberculosis</i> MmpL/S family proteins and implications in pharmaceutical targeting. Biological Chemistry, 2020, 401, 331-348.	2.5	11
283	Mycobacterium tuberculosis PPE10 (Rv0442c) alters host cell apoptosis and cytokine profile via linear ubiquitin chain assembly complex HOIP-NF-ήB signaling axis. International Immunopharmacology, 2021, 94, 107363.	3.8	11
284	Proteasome Accessory Factor C (pafC) Is a novel gene Involved in Mycobacterium Intrinsic Resistance to broad-spectrum antibiotics - Fluoroquinolones. Scientific Reports, 2015, 5, 11910.	3.3	10
285	Overexpression of Rv2788 increases mycobacterium stresses survival. Microbiological Research, 2017, 195, 51-59.	5.3	10
286	The Biology and Role of Interleukin-32 in Tuberculosis. Journal of Immunology Research, 2018, 2018, 1-9.	2.2	10
287	Metal Nanoclusters: Engineering Functional Metal Materials at the Atomic Level (Adv. Mater. 47/2018). Advanced Materials, 2018, 30, 1870358.	21.0	10
288	Comprehensive analysis of protein acetyltransferases of human pathogen Mycobacterium tuberculosis. Bioscience Reports, 2019, 39, .	2.4	10

#	Article	IF	CITATIONS
289	Radiosensitizers: Enhanced Tumor Accumulation of Sub-2 nm Gold Nanoclusters for Cancer Radiation Therapy (Adv. Healthcare Mater. 1/2014). Advanced Healthcare Materials, 2014, 3, 152-152.	7.6	9
290	Involvement of Holliday Junction Resolvase in Fluoroquinolone-Mediated Killing of Mycobacterium smegmatis. Antimicrobial Agents and Chemotherapy, 2015, 59, 1782-1785.	3.2	9
291	Characterization of a putative ArsR transcriptional regulator encoded by <i>Rv2642</i> from <i>Mycobacterium tuberculosis</i> . Journal of Biomolecular Structure and Dynamics, 2017, 35, 2031-2039.	3.5	9
292	Emerging drugs and drug targets against tuberculosis. Journal of Drug Targeting, 2017, 25, 296-306.	4.4	9
293	A perspective of chalcogenide semiconductor-noble metal nanocomposites through structural transformations. Nano Materials Science, 2019, 1, 184-197.	8.8	9
294	Biology of MarR family transcription factors and implications for targets of antibiotics against tuberculosis. Journal of Cellular Physiology, 2019, 234, 19237-19248.	4.1	9
295	Mce-associated protein Rv0177 alters the cell wall structure of Mycobacterium smegmatis and promotes macrophage apoptosis via regulating the cytokines. International Immunopharmacology, 2019, 66, 205-214.	3.8	9
296	The Evaluation and Validation of Blood-Derived Novel Biomarkers for Precise and Rapid Diagnosis of Tuberculosis in Areas With High-TB Burden. Frontiers in Microbiology, 2021, 12, 650567.	3.5	9
297	Mycobacterium tuberculosis PE17 (Rv1646) promotes host cell apoptosis via host chromatin remodeling mediated by reduced H3K9me3 occupancy. Microbial Pathogenesis, 2021, 159, 105147.	2.9	9
298	Gold nanocluster based nanocomposites for combinatorial antibacterial therapy for eradicating biofilm forming pathogens. Materials Chemistry Frontiers, 2022, 6, 689-706.	5.9	9
299	The Global Reciprocal Reprogramming between Mycobacteriophage SWU1 and Mycobacterium Reveals the Molecular Strategy of Subversion and Promotion of Phage Infection. Frontiers in Microbiology, 2016, 7, 41.	3.5	8
300	Mycobacterial IclR family transcriptional factor Rv2989 is specifically involved in isoniazid tolerance by regulating the expression of catalase encoding gene katG. RSC Advances, 2016, 6, 54661-54667.	3.6	8
301	Bacterial cytoskeleton and implications for new antibiotic targets. Journal of Drug Targeting, 2016, 24, 392-398.	4.4	8
302	Mycobacterium tuberculosis Rv0191 is an efflux pump of major facilitator superfamily transporter regulated by Rv1353c. Archives of Biochemistry and Biophysics, 2019, 667, 59-66.	3.0	8
303	Learning from nature: introducing an epiphyte–host relationship in the synthesis of alloy nanoparticles by co-reduction methods. Chemical Communications, 2014, 50, 9765-9768.	4.1	7
304	Preface for Special Topic: Few-atom metal nanoclusters and their biological applications. APL Materials, 2017, 5, 053001.	5.1	7
305	Mycobacterium tuberculosis toxin Rv2872 is an RNase involved in vancomycin stress response and biofilm development. Applied Microbiology and Biotechnology, 2018, 102, 7123-7133.	3.6	7
306	Identification of Potential Biomarkers and Related Transcription Factors in Peripheral Blood of Tuberculosis Patients. International Journal of Environmental Research and Public Health, 2020, 17, 6993.	2.6	7

#	Article	IF	CITATIONS
307	Studying the Growth of Gold Nanoclusters by Sub-stoichiometric Reduction. Cell Reports Physical Science, 2020, 1, 100206.	5.6	7
308	Mycobacteriophage SWU1-Functionalized magnetic particles for facile bioluminescent detection of Mycobacterium smegmatis. Analytica Chimica Acta, 2021, 1145, 17-25.	5.4	7
309	Diversity and Function of Wolf Spider Gut Microbiota Revealed by Shotgun Metagenomics. Frontiers in Microbiology, 2021, 12, 758794.	3.5	7
310	Atom-Precision Engineering Chemistry of Noble Metal Nanoparticles. Industrial & Engineering Chemistry Research, 2022, 61, 7594-7612.	3.7	7
311	Prokaryotic Nεâ€lysine acetylomes and implications for new antibiotics. Journal of Cellular Biochemistry, 2012, 113, 3601-3609.	2.6	6
312	Mycobacterium smegmatis MSMEG_3705 Encodes a Selective Major Facilitator Superfamily Efflux Pump with Multiple Roles. Current Microbiology, 2015, 70, 801-809.	2.2	6
313	An Infectious Disease–Associated <i>Il12b</i> Polymorphism Regulates IL-12/23 p40 Transcription Involving Poly(ADP-Ribose) Polymerase 1. Journal of Immunology, 2017, 198, 2935-2942.	0.8	6
314	Methylation in Mycobacterium-host interaction and implications for novel control measures. Infection, Genetics and Evolution, 2020, 83, 104350.	2.3	6
315	Mycobacterium tuberculosis Rv0341 Promotes Mycobacterium Survival in In Vitro Hostile Environments and within Macrophages and Induces Cytokines Expression. Pathogens, 2020, 9, 454.	2.8	6
316	Mycobacterium tuberculosis Rv3717 enhances the survival of Mycolicibacterium smegmatis by inhibiting host innate immune and caspase-dependent apoptosis. Infection, Genetics and Evolution, 2020, 84, 104412.	2.3	6
317	Differential DNA methylomes of clinical MDR, XDR and XXDR <i>Mycobacterium tuberculosis</i> isolates revealed by using single-molecule real-time sequencing. Journal of Drug Targeting, 2021, 29, 69-77.	4.4	6
318	AIE-Type Metal Nanoclusters: Synthesis, Luminescence, Fundamentals and Applications. , 2019, , 265-289.		6
319	Selected rhizosphere bacteria are associated with endangered species - Scutellaria tsinyunensis via comparative microbiome analysis. Microbiological Research, 2022, 258, 126917.	5.3	6
320	The Epigenetic Modifications of Genes Associated with Tuberculosis Susceptibility and Implications for Epi-Drugs. Critical Reviews in Eukaryotic Gene Expression, 2015, 25, 349-362.	0.9	5
321	Biosynthesis and Regulation of Bioprotective Alkaloids in the Gramineae Endophytic Fungi with Implications for Herbivores Deterrents. Current Microbiology, 2015, 71, 719-724.	2.2	5
322	The Global Ethics Corner: foundations, beliefs, and the teaching of biomedical and scientific ethics around the world. Biochemistry and Molecular Biology Education, 2017, 45, 385-395.	1.2	5
323	Mycobacterium tuberculosis Rv1515c antigen enhances survival of M. smegmatis within macrophages by disrupting the host defence. Microbial Pathogenesis, 2021, 153, 104778.	2.9	5
324	<i>Mycobacterium tuberculosis</i> effector PPE36 attenuates host cytokine storm damage via inhibiting macrophage M1 polarization. Journal of Cellular Physiology, 2021, 236, 7405-7420.	4.1	5

#	Article	IF	CITATIONS
325	The Role of PARP-1 in Host-Pathogen Interaction and Cellular Stress Responses. Critical Reviews in Eukaryotic Gene Expression, 2015, 25, 175-190.	0.9	5
326	All Hydroxyl-Thiol-Protected Gold Nanoclusters with Near-Neutral Surface Charge. Journal of Physical Chemistry Letters, 2021, 12, 9882-9887.	4.6	5
327	Enhancing catalytic properties of ligand-protected gold-based 25-metal atom nanoclusters by silver doping. Molecular Catalysis, 2022, 518, 112095.	2.0	5
328	Revealing the composition-dependent structural evolution fundamentals of bimetallic nanoparticles through an inter-particle alloying reaction. Chemical Science, 0, , .	7.4	5
329	Role of ISG15 post-translational modification in immunity against Mycobacterium tuberculosis infection. Cellular Signalling, 2022, 94, 110329.	3.6	5
330	Roles of Protein N-Myristoylation and Translational Medicine Applications. Critical Reviews in Eukaryotic Gene Expression, 2015, 25, 259-268.	0.9	4
331	Rv3369 Induces Cytokine Interleukin-1β Production and EnhancesMycobacterium smegmatisIntracellular Survival. Journal of Interferon and Cytokine Research, 2016, 36, 140-147.	1.2	4
332	Hollow Porous Carbon with inâ€situ Generated Monodisperse Gold Nanoclusters for Efficient CO Oxidation. ChemCatChem, 2018, 10, 837-842.	3.7	4
333	<i>Mycobacterium</i> Von Willebrand factor protein MSMEG_3641 is involved in biofilm formation and intracellular survival. Future Microbiology, 2020, 15, 1033-1044.	2.0	4
334	Insight into the emerging role of SARS-CoV-2 nonstructural and accessory proteins in modulation of multiple mechanisms of host innate defense. Bosnian Journal of Basic Medical Sciences, 2021, 21, 515-527.	1.0	4
335	Surface Engineering Assisted Size and Structure Modulation of Gold Nanoclusters by Ionic Liquid Cations. Angewandte Chemie, 2022, 134, .	2.0	4
336	Implications of Mycobacterium Major Facilitator Superfamily for Novel Measures against Tuberculosis. Critical Reviews in Eukaryotic Gene Expression, 2015, 25, 315-321.	0.9	3
337	Silica Nanoparticles: Probing the Microporous Structure of Silica Shell Via Aggregation-Induced Emission in Au(I)-Thiolate@SiO2 Nanoparticle (Small 47/2016). Small, 2016, 12, 6536-6536.	10.0	3
338	Sigma factors mediated signaling inMycobacterium tuberculosis. Future Microbiology, 2018, 13, 231-240.	2.0	3
339	Nanoscale Chirality. Particle and Particle Systems Characterization, 2019, 36, 1900129.	2.3	3
340	l-Alanine specifically potentiates fluoroquinolone efficacy against Mycobacterium persisters via increased intracellular reactive oxygen species. Applied Microbiology and Biotechnology, 2020, 104, 2137-2147.	3.6	3
341	Mycobacterium tuberculosis Raf kinase inhibitor protein (RKIP) Rv2140c is involved in cell wall arabinogalactan biosynthesis via phosphorylation. Microbiological Research, 2021, 242, 126615.	5.3	3
342	Mycobacterium Lrp/AsnC Family Transcriptional Factor Modulates the Arginase Pathway as Both a Sensor and a Transcriptional Repressor. Journal of Genetics and Genomics, 2021, 48, 1020-1031.	3.9	3

#	Article	IF	CITATIONS
343	Comparative genomics of theMycobacteriumsignaling architecture and implications for a novel live attenuated Tuberculosis vaccine. Human Vaccines and Immunotherapeutics, 2014, 10, 159-163.	3.3	2
344	Nanomedicine: Back to Basics: Exploiting the Innate Physicoâ€chemical Characteristics of Nanomaterials for Biomedical Applications (Adv. Funct. Mater. 38/2014). Advanced Functional Materials, 2014, 24, 5930-5930.	14.9	2
345	Mycobacteriophage putative GTPase-activating protein can potentiate antibiotics. Applied Microbiology and Biotechnology, 2016, 100, 8169-8177.	3.6	2
346	Global quantitative phosphoproteome reveals phosphorylation network of bovine lung tissue altered by Mycobacterium bovis. Microbial Pathogenesis, 2020, 147, 104402.	2.9	2
347	Differential Isoniazid Response Pattern Between Active and Dormant <i>Mycobacterium tuberculosis</i> . Microbial Drug Resistance, 2021, 27, 768-775.	2.0	2
348	Mycobacterium tuberculosis Rv0580c Impedes the Intracellular Survival of Recombinant Mycobacteria, Manipulates the Cytokines, and Induces ER Stress and Apoptosis in Host Macrophages via NF-κB and p38/JNK Signaling. Pathogens, 2021, 10, 143.	2.8	2
349	Tauroursodeoxycholic acid prevents Burkholderia pseudomallei-induced endoplasmic reticulum stress and is protective during melioidosis in mice. BMC Microbiology, 2021, 21, 137.	3.3	2
350	The frequency and dynamics of CD4+ mucosalâ€associated invariant T (MAIT) cells in active pulmonary tuberculosis. Cellular Immunology, 2021, 365, 104381.	3.0	2
351	Phosphoproteomics of Mycobacterium-host interaction and inspirations for novel measures against tuberculosis. Cellular Signalling, 2022, 91, 110238.	3.6	2
352	Interactions of Metal Nanoclusters with Light: Fundamentals and Applications (Adv. Mater. 25/2022). Advanced Materials, 2022, 34, .	21.0	2
353	Nanostructured Materials for Clean Energy and Environmental Challenges. Journal of Nanomaterials, 2014, 2014, 1-2.	2.7	1
354	Functionalization and Application. Frontiers of Nanoscience, 2015, 9, 297-345.	0.6	1
355	Complete genome sequence analysis of the novel mycobacteriophage Shandong1. Archives of Virology, 2017, 162, 3903-3905.	2.1	1
356	Probing the Qi of traditional Chinese herbal medicines by the biological synthesis of nano-Au. Journal of Materials Chemistry B, 2018, 6, 3156-3162.	5.8	1
357	Genomic and proteomic portrait of a novel mycobacteriophage SWU2 isolated from China. Infection, Genetics and Evolution, 2021, 87, 104665.	2.3	1
358	The role of Mfd in Mycobacterium tuberculosis physiology and underlying regulatory network. Microbiological Research, 2021, 246, 126718.	5.3	1
359	Mycobacterium tuberculosis RKIP (Rv2140c) dephosphorylates ERK/NF-κB upstream signaling molecules to subvert macrophage innate immune response. Infection, Genetics and Evolution, 2021, 94, 105019.	2.3	1
360	Editorial: Bacterial Transcription Factors and the Cell Cycle. Frontiers in Microbiology, 2021, 12, 821394.	3.5	1

#	Article	IF	CITATIONS
361	Intellectual property education exemplified by the patents on the CRISPR/Cas9 system. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2014, 36, 1269-73.	0.2	1
362	Optimization of High-Yield Biological Synthesis of Single-Crystalline Gold Nanoplates ChemInform, 2005, 36, no.	0.0	0
363	Engineering nanostructured materials for sustainable future. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 203-204.	1.5	0
364	Synergistic Antimicrobial Nanomaterials: Synergistic Antimicrobial Capability of Magnetically Oriented Graphene Oxide Conjugated with Gold Nanoclusters (Adv. Funct. Mater. 46/2019). Advanced Functional Materials, 2019, 29, 1970320.	14.9	0
365	<i>Mycobacterium smegmatis msmeg_3314</i> is involved in pyrazinamide and fluoroquinolones susceptibility via NAD ⁺ /NADH dysregulation. Future Microbiology, 2020, 15, 413-426.	2.0	0
366	Insertion Mutation of MSMEG_0392 Play an Important Role in Resistance of M. smegmatis to Mycobacteriophage SWU1. Infection and Drug Resistance, 2022, Volume 15, 347-357.	2.7	0
367	Antimicrobial Properties of Silver and Gold Nanomaterials. , 2022, , .		О