Wansoo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3953749/publications.pdf

Version: 2024-02-01

39 papers	940 citations	687363 13 h-index	677142 22 g-index
39	39	39	836
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Directional Vibrotactile Feedback Interface for Ergonomic Postural Adjustment. IEEE Transactions on Haptics, 2022, 15, 200-211.	2.7	10
2	Food Waste Reduction from Customers' Plates: Applying the Norm Activation Model in South Korean Context. Land, 2022, 11, 109.	2.9	15
3	Development of a Prototype Overground Pelvic Obliquity Support Robot for Rehabilitation of Hemiplegia Gait. Sensors, 2022, 22, 2462.	3.8	3
4	Hotel Guests' Psychological Distance of Climate Change and Environment-Friendly Behavior Intention. International Journal of Environmental Research and Public Health, 2022, 19, 16.	2.6	4
5	Learning cooperative dynamic manipulation skills from human demonstration videos. Mechatronics, 2022, 85, 102807.	3.3	1
6	A Sensor Fusion Strategy for Indoor Target Three-dimensional Localization based on Ultra-Wideband and Barometric Altimeter Measurements. , 2022, , .		3
7	A Human-Robot Collaboration Framework for Improving Ergonomics During Dexterous Operation of Power Tools. Robotics and Computer-Integrated Manufacturing, 2021, 68, 102084.	9.9	60
8	Unified Approach for Hybrid Motion Control of MOCA Based on Weighted Whole-Body Cartesian Impedance Formulation. IEEE Robotics and Automation Letters, 2021, 6, 3505-3512.	5.1	16
9	A Flexible Robotics-Inspired Computational Model of Compressive Loading on the Human Spine. IEEE Robotics and Automation Letters, 2021, 6, 8229-8236.	5.1	4
10	Towards an Intelligent Collaborative Robotic System for Mixed Case Palletizing. , 2020, , .		20
11	MOCA-MAN: A MObile and reconfigurable Collaborative Robot Assistant for conjoined huMAN-robot actions. , 2020, , .		16
12	An Intuitive Formulation of the Human Arm Active Endpoint Stiffness. Sensors, 2020, 20, 5357.	3.8	8
13	A Real-time Tool for Human Ergonomics Assessment based on Joint Compressive Forces., 2020,,.		8
14	An Online Method to Detect and Locate an External Load on the Human Body with Applications in Ergonomics Assessment. Sensors, 2020, 20, 4471.	3.8	5
15	An Adaptive Control Approach to Robotic Assembly with Uncertainties in Vision and Dynamics. , 2020, ,		5
16	A Visuo-Haptic Guidance Interface for Mobile Collaborative Robotic Assistant (MOCA)., 2020,,.		7
17	A Framework for Real-time and Personalisable Human Ergonomics Monitoring. , 2020, , .		7
18	A Teleoperation Interface for Loco-Manipulation Control of Mobile Collaborative Robotic Assistant. IEEE Robotics and Automation Letters, 2019, 4, 3593-3600.	5.1	62

#	Article	IF	Citations
19	A New Overloading Fatigue Model for Ergonomic Risk Assessment with Application to Human-Robot Collaboration. , 2019, , .		30
20	Development of bulldozer sensor system for estimating the position of blade cutting edge. Automation in Construction, 2019, 106, 102890.	9.8	20
21	Adaptable Workstations for Human-Robot Collaboration: A Reconfigurable Framework for Improving Worker Ergonomics and Productivity. IEEE Robotics and Automation Magazine, 2019, 26, 14-26.	2.0	68
22	Towards Ergonomic Control of Collaborative Effort in Multi-human Mobile-robot Teams. , 2019, , .		15
23	A Real-time Graphic Interface for the Monitoring of the Human Joint Overloadings with Application to Assistive Exoskeletons. Biosystems and Biorobotics, 2019, , 281-285.	0.3	2
24	Anticipatory Robot Assistance for the Prevention of Human Static Joint Overloading in Human–Robot Collaboration. IEEE Robotics and Automation Letters, 2018, 3, 68-75.	5.1	85
25	A Synergistic Approach to the Real-Time Estimation of the Feet Ground Reaction Forces and Centers of Pressure in Humans With Application to Human–Robot Collaboration. IEEE Robotics and Automation Letters, 2018, 3, 3654-3661.	5.1	16
26	ErgoTac: A Tactile Feedback Interface for Improving Human Ergonomics in Workplaces. IEEE Robotics and Automation Letters, 2018, 3, 4179-4186.	5.1	35
27	Design and Kinematic Analysis of the Hanyang Exoskeleton Assistive Robot (HEXAR) for Human Synchronized Motion. Biosystems and Biorobotics, 2017, , 275-279.	0.3	3
28	Towards ergonomic control of human-robot co-manipulation and handover. , 2017, , .		57
29	A real-time and reduced-complexity approach to the detection and monitoring of static joint overloading in humans., 2017, 2017, 828-834.		18
30	Interference cancellation for non-orthogonal multiple access used in future wireless mobile networks. Eurasip Journal on Wireless Communications and Networking, 2016, 2016, .	2.4	54
31	Development of an underactuated exoskeleton for effective walking and load-carrying assist. Advanced Robotics, 2016, 30, 535-551.	1.8	23
32	Development of a lower extremity Exoskeleton Robot with a quasi-anthropomorphic design approach for load carriage., 2015,,.		27
33	Mechanical design of the Hanyang Exoskeleton Assistive Robot(HEXAR)., 2014,,.		29
34	On-State Resistance Instability of Programmed Antifuse Cells during Read Operation. Journal of Semiconductor Technology and Science, 2014, 14, 503-507.	0.4	0
35	Human-robot cooperative control based on pHRI (Physical Human-Robot Interaction) of exoskeleton robot for a human upper extremity. International Journal of Precision Engineering and Manufacturing, 2012, 13, 985-992.	2.2	49
36	The technical trend of the exoskeleton robot system for human power assistance. International Journal of Precision Engineering and Manufacturing, 2012, 13, 1491-1497.	2.2	150

#	Article	IF	CITATIONS
37	Energy-efficient gait pattern generation of the powered robotic exoskeleton using DME., 2010,,.		4
38	Optimal gait pattern generation for powered robotic exoskeleton and verification of its feasibility. , 2010, , .		1
39	TERRAIN CLASSIFICATION AND VERIFICATION FOR LEGGED ROBOTS USING STATISTICAL METHOD. , 2010, , .		O