Guoqiang Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3953744/publications.pdf

Version: 2024-02-01

		136950	197818
52	3,603	32	49
papers	citations	h-index	g-index
52	52	52	4903
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries. Nano Letters, 2013, 13, 4642-4649.	9.1	385
2	Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–SÂbatteries. Nature Energy, 2017, 2, .	39.5	349
3	Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy, 2019, 59, 50-57.	16.0	334
4	Recent progress on MOFâ€derived carbon materials for energy storage. , 2020, 2, 176-202.		198
5	Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nature Communications, 2016, 7, 11774.	12.8	143
6	Sea urchin-like NiCoO2@C nanocomposites for Li-ion batteries and supercapacitors. Nano Energy, 2016, 27, 457-465.	16.0	127
7	Solid-State Li-lon Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life. Nano Letters, 2016, 16, 1960-1968.	9.1	124
8	Novel Solidâ€State Li/LiFePO ₄ Battery Configuration with a Ternary Nanocomposite Electrolyte for Practical Applications. Advanced Materials, 2011, 23, 5081-5085.	21.0	116
9	Tuning Li ₂ O ₂ Formation Routes by Facet Engineering of MnO ₂ Cathode Catalysts. Journal of the American Chemical Society, 2019, 141, 12832-12838.	13.7	107
10	Insight into Caâ€Substitution Effects on O3â€Type NaNi _{1/3} Fe _{1/3} Mn _{1/3} O ₂ Cathode Materials for Sodiumâ€ion Batteries Application. Small, 2018, 14, e1704523.	10.0	97
11	Toward Highly Efficient Electrocatalyst for Li–O ₂ Batteries Using Biphasic N-Doping Cobalt@Graphene Multiple-Capsule Heterostructures. Nano Letters, 2017, 17, 2959-2966.	9.1	91
12	Encapsulating micro-nano Si/SiO _x into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries. Nanoscale, 2015, 7, 8023-8034.	5.6	81
13	High-Rate Structure-Gradient Ni-Rich Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 36697-36704.	8.0	77
14	Progress in electrolyte and interface of hard carbon and graphite anode for sodiumâ€ion battery. , 2022, 4, 458-479.		77
15	The nature of irreversible phase transformation propagation in nickel-rich layered cathode for lithium-ion batteries. Journal of Energy Chemistry, 2021, 62, 351-358.	12.9	74
16	Native Vacancy Enhanced Oxygen Redox Reversibility and Structural Robustness. Advanced Energy Materials, 2019, 9, 1803087.	19.5	70
17	Multi-electron Reaction Materials for High-Energy-Density Secondary Batteries: Current Status and Prospective. Electrochemical Energy Reviews, 2021, 4, 35-66.	25.5	68
18	Coralline Glassy Lithium Phosphate-Coated LiFePO ₄ Cathodes with Improved Power Capability for Lithium Ion Batteries. Journal of Physical Chemistry C, 2013, 117, 6013-6021.	3.1	66

#	Article	IF	CITATIONS
19	Revealing mechanism responsible for structural reversibility of single-crystal VO2 nanorods upon lithiation/delithiation. Nano Energy, 2017, 36, 197-205.	16.0	65
20	Selfâ€Regulative Nanogelator Solid Electrolyte: A New Option to Improve the Safety of Lithium Battery. Advanced Science, 2016, 3, 1500306.	11.2	63
21	Encapsulating Various Sulfur Allotropes within Graphene Nanocages for Long‣asting Lithium Storage. Advanced Functional Materials, 2018, 28, 1706443.	14.9	60
22	Consolidating Lithiothermicâ€Ready Transition Metals for Li ₂ Sâ€Based Cathodes. Advanced Materials, 2020, 32, e2002403.	21.0	59
23	Enhanced lithium storage capability of FeF3·0.33H2O single crystal with active insertion site exposed. Nano Energy, 2019, 56, 884-892.	16.0	55
24	Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes. Journal of Materials Chemistry A, 2019, 7, 22248-22256.	10.3	51
25	Magnetron Sputtering Preparation of Nitrogen-Incorporated Lithium–Aluminum–Titanium Phosphate Based Thin Film Electrolytes for All-Solid-State Lithium Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 3817-3826.	3.1	49
26	Irreplaceable carbon boosts Li-O2 batteries: From mechanism research to practical application. Nano Energy, 2021, 89, 106464.	16.0	47
27	Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries. Journal of Power Sources, 2012, 202, 322-331.	7.8	43
28	Crystal Phase-Controlled Modulation of Binary Transition Metal Oxides for Highly Reversible Li–O ₂ Batteries. Nano Letters, 2021, 21, 5225-5232.	9.1	42
29	Controllable crystalline preferred orientation in Li–Co–Ni–Mn oxide cathode thin films for all-solid-state lithium batteries. Nanoscale, 2014, 6, 10611.	5.6	41
30	Scalable Preparation of Ternary Hierarchical Silicon Oxide–Nickel–Graphite Composites for Lithiumâ€ion Batteries. ChemSusChem, 2015, 8, 4073-4080.	6.8	40
31	Insights into Structural Evolution of Lithium Peroxides with Reduced Charge Overpotential in Liâ ² O ₂ System. Advanced Energy Materials, 2019, 9, 1900662.	19.5	38
32	Particulate Anion Sorbents as Electrolyte Additives for Lithium Batteries. Advanced Functional Materials, 2020, 30, 2003055.	14.9	38
33	Stable Nanostructured Cathode with Polycrystalline Li-Deficient Li _{0.28} Co _{0.29} Ni _{0.30} Mn _{0.20} O ₂ for Lithium-lon Batteries. Nano Letters, 2014, 14, 1281-1287.	9.1	36
34	Freestanding highly defect nitrogen-enriched carbon nanofibers for lithium ion battery thin-film anodes. Journal of Materials Chemistry A, 2017, 5, 5532-5540.	10.3	33
35	Enhanced Electrochemical Performance of Sodium Manganese Ferrocyanide by Na ₃ (VOPO ₄) ₂ F Coating for Sodium-Ion Batteries. ACS Applied Materials & Distribution and Society (19, 11, 37685-37692.	8.0	33
36	A three-dimensional hierarchical structure of cyclized-PAN/Si/Ni for mechanically stable silicon anodes. Journal of Materials Chemistry A, 2017, 5, 24667-24676.	10.3	29

#	Article	IF	CITATIONS
37	Toward Mechanically Stable Silicon-Based Anodes Using Si/SiO _{<i>x</i>} @C Hierarchical Structures with Well-Controlled Internal Buffer Voids. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41422-41430.	8.0	25
38	Effectively stabilizing electrode/electrolyte interface of high-energy LiNi0.9Co0.1O2/ Si–C system by simple cathode surface-coating. Nano Energy, 2020, 76, 105065.	16.0	23
39	Improved Cycling Performance of P2-Na _{0.67} Based on Sn Substitution Combined with Polypyrrole Coating. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3793-3804.	8.0	22
40	Ultraviolet-assisted construction of low-Pt-loaded MXene catalysts for high-performance Liâ^'O2 batteries. Energy Storage Materials, 2022, 51, 806-814.	18.0	21
41	Tuning Microstructures of Graphene to Improve Power Capability of Rechargeable Hybrid Aqueous Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37110-37118.	8.0	19
42	Thermochemical Cyclization Constructs Bridged Dual-Coating of Ni-Rich Layered Oxide Cathodes for High-Energy Li-Ion Batteries. Nano Letters, 2022, 22, 5221-5229.	9.1	19
43	Clean the Ni-Rich Cathode Material Surface With Boric Acid to Improve Its Storage Performance. Frontiers in Chemistry, 2020, 8, 573.	3.6	18
44	In Situ Construction of High-Performing Compact Si–SiO _{<i>x</i>} –CN _{<i>x</i>} Composites from Polyaminosiloxane for Li-Ion Batteries. ACS Applied Materials & Diterfaces, 2021, 13, 5008-5016.	8.0	13
45	Toward uniform Li plating/stripping by optimizing Li-ion transport and nucleation of engineered graphene aerogel. Chemical Engineering Journal, 2022, 427, 130967.	12.7	12
46	Quantifying the Contribution of the Dispersion Interaction and Hydrogen Bonding to the Anisotropic Elastic Properties of Chitin and Chitosan. Biomacromolecules, 2022, 23, 1633-1642.	5 . 4	7
47	Lithiothermicâ€Synchronous Construction of Moâ€Li ₂ Sâ€Graphene Nanocomposites for Highâ€Energy Li ₂ 5//SiC Battery. Advanced Functional Materials, 2022, 32, .	14.9	5
48	Novel Micronano Thin Film Based on Li–B–P–O Target Incorporating Nitrogen as Electrolyte: How Does Local Structure Influence Chemical and Electrochemical Performances?. Journal of Physical Chemistry C, 0, , 130916080633007.	3.1	3
49	Preparation and Electrochemical Performance of Porous Si/SiOx/G Composite Anode for Lithium Ion Batteries. IOP Conference Series: Materials Science and Engineering, 2020, 735, 012015.	0.6	3
50	Component distribution of nano-carbon materials assisted by Time of Flight-Secondary Ion Mass Spectrometer. Journal of Physics: Conference Series, 2021, 2011, 012071.	0.4	3
51	A novel functional polymeric binder for silicon anodes in lithium-ion batteries. Journal of Physics: Conference Series, 2021, 2021, 012017.	0.4	2
52	Thermal simulation and prediction of high-energy LiNi0.8Co0.15Al0.05O2//Si-C pouch battery during rapid discharging. Journal of Energy Storage, 2021, 47, 103536.	8.1	2