
Ricardo do Carmo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3953657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of nano-SiO2 and nano-Al2O3 additions on steel-to-concrete bonding. Construction and Building Materials, 2016, 125, 1080-1092.	3.2	55
2	Experimental development of low cement content and recycled construction and demolition waste aggregates concrete. Construction and Building Materials, 2021, 273, 121680.	3.2	49
3	Ductility and linear analysis with moment redistribution in reinforced high-strength concrete beams. Canadian Journal of Civil Engineering, 2005, 32, 194-203.	0.7	45
4	Influence of lightweight aggregates concrete on the bond strength of concrete-to-concrete interfaces. Construction and Building Materials, 2018, 180, 519-530.	3.2	35
5	Influence of nano-SiO2 and nano-Al2O3 additions on the shear strength and the bending moment capacity of RC beams. Construction and Building Materials, 2016, 123, 35-46.	3.2	29
6	Available plastic rotation in continuous high-strength concrete beams. Canadian Journal of Civil Engineering, 2008, 35, 1152-1162.	0.7	26
7	Influence of both concrete strength and transverse confinement on bending behavior of reinforced LWAC beams. Engineering Structures, 2013, 48, 329-341.	2.6	25
8	Assessing steel strains on reinforced concrete members from surface cracking patterns. Construction and Building Materials, 2015, 98, 265-275.	3.2	25
9	Effects of the compressive reinforcement buckling on the ductility of RC beams in bending. Engineering Structures, 2012, 37, 14-23.	2.6	24
10	Deformable strut and tie model for the calculation of the plastic rotation capacity. Computers and Structures, 2006, 84, 2174-2183.	2.4	23
11	Curvature assessment of reinforced concrete beams using photogrammetric techniques. Materials and Structures/Materiaux Et Constructions, 2014, 47, 1745-1760.	1.3	23
12	Longitudinal reinforcement ratio in lightweight aggregate concrete beams. Engineering Structures, 2014, 81, 219-229.	2.6	22
13	Efficiency of cement content and of compactness on mechanical performance of low cement concrete designed with packing optimization. Construction and Building Materials, 2021, 266, 121077.	3.2	21
14	Durability and Time-Dependent Properties of Low-Cement Concrete. Materials, 2020, 13, 3583.	1.3	19
15	Required plastic rotation of RC beams. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2006, 159, 77-86.	0.4	15
16	Method for assessing beam column joints in RC structures using photogrammetric computer vision. Structural Control and Health Monitoring, 2017, 24, e2013.	1.9	14
17	Experimental study of punching failure in LWAC slabs with different strengths. Materials and Structures/Materiaux Et Constructions, 2016, 49, 2611-2626.	1.3	12
18	Influence of normal stress and reinforcement ratio on the behavior of LWAC interfaces. Construction and Building Materials, 2018, 192, 317-329.	3.2	12

RICARDO DO CARMO

#	Article	IF	CITATIONS
19	Stiffness of reinforced concrete slabs subjected to torsion. Materials and Structures/Materiaux Et Constructions, 2014, 47, 227-238.	1.3	11
20	Flexural behavior of eco-efficient and ultra-high durability concrete beams. Construction and Building Materials, 2020, 236, 117546.	3.2	11
21	Durability of mortar matrices of low-cement concrete with specific additions. Construction and Building Materials, 2021, 309, 125060.	3.2	11
22	Experimental evaluation of lightweight aggregate concrete beam–column joints with different strengths and reinforcement ratios. Structural Concrete, 2017, 18, 950-961.	1.5	10
23	A solution with low-cement-lightweight concrete and high durability for applications in prefabrication. Construction and Building Materials, 2021, 275, 122153.	3.2	10
24	Enhanced Mechanical and Durability Performances of Low Cement Concrete with Natural Pozzolan Addition. Journal of Advanced Concrete Technology, 2021, 19, 519-535.	0.8	10
25	Experimental study on the interface between low cement recycled aggregates concrete and ultra-high durability concrete. Construction and Building Materials, 2021, 304, 124603.	3.2	10
26	Influence of Pozzolan, Slag and Recycled Aggregates on the Mechanical and Durability Properties of Low Cement Concrete. Materials, 2021, 14, 4173.	1.3	9
27	Influence of the shear force and transverse reinforcement ratio on plastic rotation capacity. Structural Concrete, 2005, 6, 107-117.	1.5	7
28	Interface role in composite RC beams with a light-weight concrete core and an ultra high-durability concrete skin. Engineering Structures, 2021, 228, 111524.	2.6	7
29	Experimental Investigation of Bond Stress and Deformations in LWAC Ties Reinforced with GFRP Bars. Strain, 2014, 50, 318-333.	1.4	6
30	Tensile and flexural behaviour of LWAC members under short-term service loads. Engineering Structures, 2015, 92, 142-155.	2.6	6
31	Design and Durability Assessment of Restoring Mortar for Concrete Heritage. Materials, 2021, 14, 4508.	1.3	6
32	Environmental Impacts and Benefits of the End-of-Life of Building Materials: Database to Support Decision Making and Contribute to Circularity. Sustainability, 2021, 13, 12659.	1.6	6
33	Influence of nanoparticles additions on the bond between steel fibres and the binding paste. Construction and Building Materials, 2017, 151, 312-318.	3.2	5
34	Evaluation of the shear transfer mechanisms in reinforced concrete beams using photogrammetry. Structural Concrete, 2020, 21, 333-348.	1.5	5
35	Influence of Nano-SiO ₂ , Nano-Al ₂ O ₃ , and Nano-ZnO Additions on Cementitious Matrixes with Different Powder and Steel Fibers Content. Journal of Advanced Concrete Technology, 2021. 19. 40-52.	0.8	5
36	Bending moments in D-regions of reinforced concrete beams. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2011, 164, 239-254.	0.4	4

RICARDO DO CARMO

37 Numerical modeling of concrete beams under serviceability conditions with a discrete crack approach and noniterative solutionâ€finding algorithms. Structural Concrete, 2017, 18, 225-236. 1.5 38 Assessment of plastic rotation and applied load in reinforced concrete, steel and timber beams using image-based analysis. Engineering Structures, 2019, 198, 109519. 2.6	1
Assessment of plastic rotation and applied load in reinforced concrete, steel and timber beams using 2.6 2.6	
	t
³⁹ Load bearing capacity of connections between innovative pre-walls designed to have high durability and eco-efficiency. Journal of Building Engineering, 2021, 44, 103356.	3
40New Trends for Reinforced Concrete Structures: Some Results of Exploratory Studies.1.440Infrastructures, 2017, 2, 17.1.4	2
41 VALIDATION OF A DISCRETE CRACK MODEL FOR LIGHTWEIGHT AGGREGATE CONCRETE BEAMS. , 2016, , .	О