
Ingrid Guarnetti Prandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3953168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of the stress-related LHCSR1 complex determined by an integrated computational strategy. Communications Biology, 2022, 5, 145.	4.4	8
2	Parameterization and validation of a new force field for Pt(II) complexes of 2â€(4′â€aminoâ€2′â€hydroxyphenyl)benzothiazole. International Journal of Quantum Chemistry, 2021, 12	1, ² e26525.	. 7
3	Altered Local Interactions and Long-Range Communications in UK Variant (B.1.1.7) Spike Glycoprotein. International Journal of Molecular Sciences, 2021, 22, 5464.	4.1	9
4	SPRED2 loss-of-function causes a recessive Noonan syndrome-like phenotype. American Journal of Human Genetics, 2021, 108, 2112-2129.	6.2	23
5	Esterase 2 as a fluorescent biosensor for the detection of organophosphorus compounds: docking and electronic insights from molecular dynamics. Molecular Simulation, 2019, 45, 1432-1436.	2.0	6
6	Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments. International Journal of Molecular Sciences, 2019, 20, 1829.	4.1	43
7	Could Quantum Mechanical Properties Be Reflected on Classical Molecular Dynamics? The Case of Halogenated Organic Compounds of Biological Interest. Frontiers in Chemistry, 2019, 7, 848.	3.6	13
8	Interactions of cantharidin-like inhibitors with human protein phosphatase-5 in a Mg2+ system: molecular dynamics and quantum calculations. Journal of Molecular Modeling, 2018, 24, 303.	1.8	0
9	Fine control of chlorophyll-carotenoid interactions defines the functionality of light-harvesting proteins in plants. Scientific Reports, 2017, 7, 13956.	3.3	57
10	Classical Force Fields Tailored for QM Applications: Is It Really a Feasible Strategy?. Journal of Chemical Theory and Computation, 2017, 13, 4636-4648.	5.3	45
11	Enzimas degradantes de organofosforados: Base molecular e perspectivas para biorremediação enzimática de agroquÃmicos. Ciencia E Agrotecnologia, 2017, 41, 471-482.	1.5	15
12	Combining classical molecular dynamics and quantum mechanical methods for the description of electronic excitations: The case of carotenoids. Journal of Computational Chemistry, 2016, 37, 981-991.	3.3	40
13	Photoprotection and triplet energy transfer in higher plants: the role of electronic and nuclear fluctuations. Physical Chemistry Chemical Physics, 2016, 18, 11288-11296.	2.8	21
14	Plasmon Enhanced Light Harvesting: Multiscale Modeling of the FMO Protein Coupled with Gold Nanoparticles. Journal of Physical Chemistry A, 2015, 119, 5197-5206.	2.5	18
15	Towards an ab initio description of the optical spectra of light-harvesting antennae: application to the CP29 complex of photosystem II. Physical Chemistry Chemical Physics, 2015, 17, 14405-14416.	2.8	47