
David W C Beasley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3952910/publications.pdf Version: 2024-02-01

DAVID WC REASIEV

#	Article	IF	CITATIONS
1	Baseline mapping of Oropouche virology, epidemiology, therapeutics, and vaccine research and development. Npj Vaccines, 2022, 7, 38.	6.0	11
2	Teixobactin Provides Protection against Inhalation Anthrax in the Rabbit Model. Pathogens, 2020, 9, 773.	2.8	5
3	Long-term, West Nile virus-induced neurological changes: A comparison of patients and rodent models. Brain, Behavior, & Immunity - Health, 2020, 7, 100105.	2.5	19
4	Baseline mapping of severe fever with thrombocytopenia syndrome virology, epidemiology and vaccine research and development. Npj Vaccines, 2020, 5, 111.	6.0	24
5	New international guidance on quality, safety and efficacy of DNA vaccines. Npj Vaccines, 2020, 5, 53.	6.0	2
6	Defining a correlate of protection for chikungunya virus vaccines. Vaccine, 2019, 37, 7427-7436.	3.8	24
7	Baseline mapping of Lassa fever virology, epidemiology and vaccine research and development. Npj Vaccines, 2018, 3, 11.	6.0	75
8	Cross-neutralisation of viruses of the tick-borne encephalitis complex following tick-borne encephalitis vaccination and/or infection. Npj Vaccines, 2017, 2, 5.	6.0	36
9	First vaccine approval under the FDA Animal Rule. Npj Vaccines, 2016, 1, 16013.	6.0	36
10	Supramolecular peptide hydrogel adjuvanted subunit vaccine elicits protective antibody responses against West Nile virus. Vaccine, 2016, 34, 5479-5482.	3.8	36
11	Plasticity of a critical antigenic determinant in the West Nile virus NY99 envelope protein domain III. Virology, 2016, 496, 97-105.	2.4	2
12	ELISA and Neutralization Methods to Measure Anti-West Nile Virus Antibody Responses. Methods in Molecular Biology, 2016, 1435, 129-141.	0.9	3
13	Propagation and Titration of West Nile Virus on Vero Cells. Methods in Molecular Biology, 2016, 1435, 19-27.	0.9	5
14	Status of research and development of vaccines for chikungunya. Vaccine, 2016, 34, 2976-2981.	3.8	50
15	Recovery of West Nile Virus Envelope Protein Domain III Chimeras with Altered Antigenicity and Mouse Virulence. Journal of Virology, 2016, 90, 4757-4770.	3.4	11
16	Immunogenicity and Efficacy of Flagellin-Envelope Fusion Dengue Vaccines in Mice and Monkeys. Vaccine Journal, 2015, 22, 516-525.	3.1	21
17	Yellow fever virus: Genetic and phenotypic diversity and implications for detection, prevention and therapy. Antiviral Research, 2015, 115, 48-70.	4.1	57
18	Utilization of an Eilat Virus-Based Chimera for Serological Detection of Chikungunya Infection. PLoS Neglected Tropical Diseases, 2015, 9, e0004119.	3.0	48

DAVID W C BEASLEY

#	Article	IF	CITATIONS
19	Multiplexed Digital mRNA Profiling of the Inflammatory Response in the West Nile Swiss Webster Mouse Model. PLoS Neglected Tropical Diseases, 2014, 8, e3216.	3.0	11
20	GeneSV – an Approach to Help Characterize Possible Variations in Genomic and Protein Sequences. Bioinformatics and Biology Insights, 2014, 8, BBI.S13076.	2.0	5
21	Enhancement of protein expression by alphavirus replicons by designing self-replicating subgenomic RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10708-10713.	7.1	38
22	Adaptation of yellow fever virus 17D to Vero cells is associated with mutations in structural and non-structural protein genes. Virus Research, 2013, 176, 280-284.	2.2	12
23	Molecular evolution of lineage 2 West Nile virus. Journal of General Virology, 2013, 94, 318-325.	2.9	63
24	Resurgence of West Nile neurologic disease in the United States in 2012: What happened? What needs to be done?. Antiviral Research, 2013, 99, 1-5.	4.1	41
25	Vaccines and immunotherapeutics for the prevention and treatment of infections with West Nile virus. Immunotherapy, 2011, 3, 269-285.	2.0	63
26	Envelope and pre-membrane protein structural amino acid mutations mediate diminished avian growth and virulence of a Mexican West Nile virus isolate. Journal of General Virology, 2011, 92, 2810-2820.	2.9	18
27	Current use and development of vaccines for Japanese encephalitis. Expert Opinion on Biological Therapy, 2008, 8, 95-106.	3.1	91
28	Long Range Communication in the Envelope Protein Domain III and Its Effect on the Resistance of West Nile Virus to Antibody-mediated Neutralization. Journal of Biological Chemistry, 2008, 283, 613-622.	3.4	15
29	The Infectious Agent. Tropical Medicine, 2008, , 29-73.	0.3	9
30	Genetic variation of St. Louis encephalitis virus. Journal of General Virology, 2008, 89, 1901-1910.	2.9	27
31	Thioaptamer decoy targeting of AP-1 proteins influences cytokine expression and the outcome of arenavirus infections. Journal of General Virology, 2007, 88, 981-990.	2.9	31
32	Recent Advances in the Molecular Biology of West Nile Virus. Current Molecular Medicine, 2005, 5, 835-850.	1.3	47
33	Envelope Protein Glycosylation Status Influences Mouse Neuroinvasion Phenotype of Genetic Lineage 1 West Nile Virus Strains. Journal of Virology, 2005, 79, 8339-8347.	3.4	274
34	Genome Sequence and Attenuating Mutations in West Nile Virus Isolate from Mexico. Emerging Infectious Diseases, 2004, 10, 2221-2224.	4.3	71
35	Protection against Japanese encephalitis virus strains representing four genotypes by passive transfer of sera raised against ChimeriVaxâ,,¢-JE experimental vaccine. Vaccine, 2004, 22, 3722-3726.	3.8	74
36	Identification of Neutralizing Epitopes within Structural Domain III of the West Nile Virus Envelope Protein. Journal of Virology, 2002, 76, 13097-13100.	3.4	230

#	Article	IF	CITATIONS
37	Mouse Neuroinvasive Phenotype of West Nile Virus Strains Varies Depending upon Virus Genotype. Virology, 2002, 296, 17-23.	2.4	221
38	West Nile Virus Strains Differ in Mouse Neurovirulence and Binding to Mouse or Human Brain Membrane Receptor Preparations. Annals of the New York Academy of Sciences, 2001, 951, 332-335.	3.8	27