Birger Lindberg MÃ, ller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3952740/publications.pdf

Version: 2024-02-01

343 papers 20,360 citations

76 h-index 121 g-index

361 all docs

361 does citations

times ranked

361

14675 citing authors

#	Article	IF	CITATIONS
1	Isolation and structure elucidation of caryophyllane sesquiterpenoids from leaves of Eremophila spathulata. Phytochemistry Letters, 2022, 47, 156-163.	1.2	6
2	Serrulatane diterpenoids from the leaves of Eremophila glabra and their potential as antihyperglycemic drug leads. Phytochemistry, 2022, 196, 113072.	2.9	10
3	Cyanogenesis in the Sorghum Genus: From Genotype to Phenotype. Genes, 2022, 13, 140.	2.4	7
4	Transcript profiles of wild and domesticated sorghum under water-stressed conditions and the differential impact on dhurrin metabolism. Planta, 2022, 255, 51.	3.2	2
5	Circular biomanufacturing through harvesting solar energy and CO2. Trends in Plant Science, 2022, 27, 655-673.	8.8	18
6	Metabolons and bio-condensates: The essence of plant plasticity and the key elements in development of green production systems. Advances in Botanical Research, 2021, , 185-223.	1.1	3
7	Variation in production of cyanogenic glucosides during early plant development: A comparison of wild and domesticated sorghum. Phytochemistry, 2021, 184, 112645.	2.9	16
8	Biased cytochrome P450-mediated metabolism via small-molecule ligands binding P450 oxidoreductase. Nature Communications, 2021, 12, 2260.	12.8	34
9	Phylogenetic relationships in the <i>Sorghum</i> genus based on sequencing of the chloroplast and nuclear genes. Plant Genome, 2021, 14, e20123.	2.8	13
16			
10	Plant cytochrome P450 plasticity and evolution. Molecular Plant, 2021, 14, 1244-1265.	8.3	124
10	Plant cytochrome P450 plasticity and evolution. Molecular Plant, 2021, 14, 1244-1265. Navigating through chemical space and evolutionary time across the Australian continent in plant genus <i>Eremophila Plant Journal, 2021, 108, 555-578.</i>	5.7	13
	Navigating through chemical space and evolutionary time across the Australian continent in plant		
11	Navigating through chemical space and evolutionary time across the Australian continent in plant genus <i>Eremophila</i> . Plant Journal, 2021, 108, 555-578. Regulation of dhurrin pathway gene expression during SorghumÂbicolor development. Planta, 2021,	5.7	13
11 12	Navigating through chemical space and evolutionary time across the Australian continent in plant genus <i>Eremophila</i> . Plant Journal, 2021, 108, 555-578. Regulation of dhurrin pathway gene expression during SorghumÂbicolor development. Planta, 2021, 254, 119. Crop wild relatives as a genetic resource for generating low-cyanide, drought-tolerant Sorghum.	5.7 3.2	9
11 12 13	Navigating through chemical space and evolutionary time across the Australian continent in plant genus <i>Eremophila</i> Regulation of dhurrin pathway gene expression during SorghumÂbicolor development. Planta, 2021, 254, 119. Crop wild relatives as a genetic resource for generating low-cyanide, drought-tolerant Sorghum. Environmental and Experimental Botany, 2020, 169, 103884. Stabilization of dhurrin biosynthetic enzymes from Sorghum bicolor using a natural deep eutectic	5.7 3.2 4.2	13 9 28
11 12 13	Navigating through chemical space and evolutionary time across the Australian continent in plant genus <i>Eremophila </i> Navigating through chemical space and evolutionary time across the Australian continent in plant genus <i>Eremophila </i> Navigating through chemical space and evolutionary time across the Australian continent in plant genus <i>Eremophila </i> Navigating through chemical space and evolutionary time across the Australian continent in plant genus <i 103884.="" 112214.="" 119.="" 169,="" 170,="" 2020,="" 2021,="" 254,="" <i="" a="" and="" as="" bicolor="" biology="" biosynthetic="" botany,="" cannabinoid="" cannabinoids="" crop="" deep="" development.="" dhurrin="" drought-tolerant="" during="" environmental="" enzymes="" eutectic="" experimental="" expression="" for="" from="" gene="" generating="" genetic="" glucosides="" in="" low-cyanide,="" natural="" of="" pathway="" phytochemistry,="" planta,="" relatives="" resource="" solvent.="" sorghum="" sorghum.="" sorghumâbicolor="" stabilization="" synthetic="" using="" wild="">Nicotiana benthamiana </i> Nicotiana benthamiana	5.7 3.2 4.2 2.9	13 9 28 22
11 12 13 14	Navigating through chemical space and evolutionary time across the Australian continent in plant genus <i>Eremophila</i> Regulation of dhurrin pathway gene expression during SorghumÂbicolor development. Planta, 2021, 254, 119. Crop wild relatives as a genetic resource for generating low-cyanide, drought-tolerant Sorghum. Environmental and Experimental Botany, 2020, 169, 103884. Stabilization of dhurrin biosynthetic enzymes from Sorghum bicolor using a natural deep eutectic solvent. Phytochemistry, 2020, 170, 112214. Synthetic Biology of Cannabinoids and Cannabinoid Glucosides in <i>Nicotiana benthamiana</i> <is>Synthetic Biology of Cannabinoids and Cannabinoid Glucosides in <i>Nicotiana benthamiana</i> <is>Synthetic Biology of Cannabinoids and Cannabinoid Glucosides in <i>Natural Products, 2020, 83, 2877-2893. The entangled dynamics of eucalypt leaf and flower volatile emissions. Environmental and</i></is></is>	5.7 3.2 4.2 2.9	13 9 28 22 46

#	Article	IF	CITATIONS
19	Biosynthesis of cyanogenic glucosides in <i>Phaseolus lunatus</i> and the evolution of oximeâ€based defenses. Plant Direct, 2020, 4, e00244.	1.9	16
20	A flavin-dependent monooxygenase catalyzes the initial step in cyanogenic glycoside synthesis in ferns. Communications Biology, 2020, 3, 507.	4.4	20
21	First-principles identification of C-methyl-scyllo-inositol (mytilitol) \hat{a} \in A new species-specific metabolite indicator of geographic origin for marine bivalve molluscs (Mytilus and Ruditapes spp.). Food Chemistry, 2020, 328, 126959.	8.2	7
22	Nerylneryl diphosphate is the precursor of serrulatane, viscidane and cembrane-type diterpenoids in Eremophila species. BMC Plant Biology, 2020, 20, 91.	3.6	21
23	Phenolic cross-links: building and de-constructing the plant cell wall. Natural Product Reports, 2020, 37, 919-961.	10.3	111
24	PTP1B-Inhibiting Branched-Chain Fatty Acid Dimers from <i>Eremophila oppositifolia</i> subsp. <i>angustifolia</i> Identified by High-Resolution PTP1B Inhibition Profiling and HPLC-PDA-HRMS-SPE-NMR Analysis. Journal of Natural Products, 2020, 83, 1598-1610.	3.0	21
25	Phytochemistry and bioactivity of Acacia sensu stricto (Fabaceae: Mimosoideae). Phytochemistry Reviews, 2019, 18, 129-172.	6.5	9
26	Amylopectin Chain Length Dynamics and Activity Signatures of Key Carbon Metabolic Enzymes Highlight Early Maturation as Culprit for Yield Reduction of Barley Endosperm Starch after Heat Stress. Plant and Cell Physiology, 2019, 60, 2692-2706.	3.1	12
27	2(5H)-Furanone sesquiterpenes from Eremophila bignoniiflora: High-resolution inhibition profiling and PTP1B inhibitory activity. Phytochemistry, 2019, 166, 112054.	2.9	23
28	Mutation of a bHLH transcription factor allowed almond domestication. Science, 2019, 364, 1095-1098.	12.6	116
29	Defining optimal electron transfer partners for light-driven cytochrome P450 reactions. Metabolic Engineering, 2019, 55, 33-43.	7.0	24
30	Classification of barley U-box E3 ligases and their expression patterns in response to drought and pathogen stresses. BMC Genomics, 2019, 20, 326.	2.8	37
31	Deletion of biosynthetic genes, specific SNP patterns and differences in transcript accumulation cause variation in hydroxynitrile glucoside content in barley cultivars. Scientific Reports, 2019, 9, 5730.	3.3	6
32	The Interplay Between Water Limitation, Dhurrin, and Nitrate in the Low-Cyanogenic Sorghum Mutant adult cyanide deficient class 1. Frontiers in Plant Science, 2019, 10, 1458.	3.6	17
33	Glutathione transferases catalyze recycling of autoâ€ŧoxic cyanogenic glucosides in sorghum. Plant Journal, 2018, 94, 1109-1125.	5.7	60
34	Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells. Scientific Reports, 2018, 8, 2691.	3.3	22
35	Oximes: Unrecognized Chameleons in General and Specialized Plant Metabolism. Molecular Plant, 2018, 11, 95-117.	8.3	90
36	\hat{I}^2 -Glucosidase activity in almond seeds. Plant Physiology and Biochemistry, 2018, 126, 163-172.	5.8	35

#	Article	IF	CITATIONS
37	Biosynthesis of bioactive diterpenoids in the medicinal plant ⟨i⟩Vitex agnus astus⟨/i⟩. Plant Journal, 2018, 93, 943-958.	5.7	68
38	The Intracellular Localization of the Vanillin Biosynthetic Machinery in Pods of Vanilla planifolia. Plant and Cell Physiology, 2018, 59, 304-318.	3.1	39
39	Diurnal regulation of cyanogenic glucoside biosynthesis and endogenous turnover in cassava. Plant Direct, 2018, 2, e00038.	1.9	25
40	Direct observation of multiple conformational states in Cytochrome P450 oxidoreductase and their modulation by membrane environment and ionic strength. Scientific Reports, 2018, 8, 6817.	3.3	31
41	Cutting edges and weaving threads in the gene editing (D^-)evolution: reconciling scientific progress with legal, ethical, and social concerns. Journal of Law and the Biosciences, 2018, 5, 35-83.	1.6	20
42	Biological activity and LC-MS/MS profiling of extracts from the Australian medicinal plant <i>Acacia ligulata</i> (Fabaceae). Natural Product Research, 2018, 32, 576-581.	1.8	5
43	Vanilla: The Most Popular Flavour. , 2018, , 3-24.		29
44	Dynamic metabolic solutions to the sessile life style of plants. Natural Product Reports, 2018, 35, 1140-1155.	10.3	57
45	Engineering of CYP76AH15 can improve activity and specificity towards forskolin biosynthesis in yeast. Microbial Cell Factories, 2018, 17, 181.	4.0	38
46	Elucidation of the Amygdalin Pathway Reveals the Metabolic Basis of Bitter and Sweet Almonds (<i>Prunus dulcis</i>). Plant Physiology, 2018, 178, 1096-1111.	4.8	64
47	Reconfigured Cyanogenic Glucoside Biosynthesis in <i>Eucalyptus cladocalyx</i> Involves a Cytochrome P450 CYP706C55. Plant Physiology, 2018, 178, 1081-1095.	4.8	51
48	Mass Spectrometry Based Imaging of Labile Glucosides in Plants. Frontiers in Plant Science, 2018, 9, 892.	3.6	17
49	Phototrophic production of heterologous diterpenoids and a hydroxy-functionalized derivative from Chlamydomonas reinhardtii. Metabolic Engineering, 2018, 49, 116-127.	7.0	91
50	Heterologous production of the widely used natural food colorant carminic acid in Aspergillus nidulans. Scientific Reports, 2018, 8, 12853.	3.3	35
51	Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts. Insects, 2018, 9, 51.	2.2	39
52	Counting the costs: nitrogen partitioning in Sorghum mutants. Functional Plant Biology, 2018, 45, 705.	2.1	24
53	The CYP79A1 catalyzed conversion of tyrosine to (E)-p-hydroxyphenylacetaldoxime unravelled using an improved method for homology modeling. Phytochemistry, 2017, 135, 8-17.	2.9	8
54	De-bugging and maximizing plant cytochrome P450 production in Escherichia coli with C-terminal GFP fusions. Applied Microbiology and Biotechnology, 2017, 101, 4103-4113.	3.6	13

#	Article	IF	Citations
55	Spatial analysis of root hemiparasitic shrubs and their hosts: a search for spatial signatures of above-and below-ground interactions. Plant Ecology, 2017, 218, 185-196.	1.6	4
56	Assembly of Dynamic P450-Mediated Metabolonsâ€"Order Versus Chaos. Current Molecular Biology Reports, 2017, 3, 37-51.	1.6	42
57	Chemical Synthesis of Lâ€Fucose Derivatives for Acceptor Specificity Characterisation of Plant Cell Wall Glycosyltransferases. ChemistrySelect, 2017, 2, 997-1007.	1.5	0
58	Bottom-Up Elucidation of Glycosidic Bond Stereochemistry. Analytical Chemistry, 2017, 89, 4540-4549.	6.5	64
59	Isolation and Structural Characterization of Echinocystic Acid Triterpenoid Saponins from the Australian Medicinal and Food Plant <i>Acacia ligulata</i> Section 1992-2698.	3.0	15
60	Spatial separation of the cyanogenic \hat{l}^2 -glucosidase ZfBGD2 and cyanogenic glucosides in the haemolymph of $\langle i \rangle$ Zygaena $\langle i \rangle$ larvae facilitates cyanide release. Royal Society Open Science, 2017, 4, 170262.	2.4	20
61	Synthesis of Câ€Glucosylated Octaketide Anthraquinones in <i>Nicotiana benthamiana</i> by Using a Multispeciesâ€Based Biosynthetic Pathway. ChemBioChem, 2017, 18, 1893-1897.	2.6	24
62	Characterization of a membrane-bound C-glucosyltransferase responsible for carminic acid biosynthesis in Dactylopius coccus Costa. Nature Communications, 2017, 8, 1987.	12.8	15
63	An expression tag toolbox for microbial production of membrane bound plant cytochromes P450. Biotechnology and Bioengineering, 2017, 114, 751-760.	3.3	19
64	Degradation of lignin βâ€aryl ether units in <i>Arabidopsis thaliana</i> expressing <i>LigD</i> , <i> LigF</i> and <i>LigG</i> from <i>Sphingomonas paucimobilis </i> <scp>SYK</scp> â€6. Plant Biotechnology Journal, 2017, 15, 581-593.	8.3	29
65	Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering. Frontiers in Plant Science, 2017, 8, 800.	3.6	52
66	Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. ELife, 2017, 6, .	6.0	97
67	Sunlight-driven Environmental Benign Production of Bioactive Natural Products with Focus on Diterpenoids and the Pathways Involved in their Formation. Chimia, 2017, 71, 851.	0.6	4
68	Transcriptome and Metabolite Changes during Hydrogen Cyanamide-Induced Floral Bud Break in Sweet Cherry. Frontiers in Plant Science, 2017, 8, 1233.	3.6	81
69	Biosynthesis of the leucine derived αâ€, β―and γâ€hydroxynitrile glucosides in barley (<i>Hordeum vulgare</i>)	Ţj.FTQq1	130.784314
70	Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase. Scientific Reports, 2016, 6, 29459.	3.3	17
71	Microbial production of next-generation stevia sweeteners. Microbial Cell Factories, 2016, 15, 207.	4.0	96
72	Chemical control of flowering time. Journal of Experimental Botany, 2016, 68, erw427.	4.8	48

#	Article	lF	CITATIONS
73	Expanding the Landscape of Diterpene Structural Diversity through Stereochemically Controlled Combinatorial Biosynthesis. Angewandte Chemie, 2016, 128, 2182-2186.	2.0	17
74	Metabolic consequences of knocking out <i>UGT85B1</i> , the gene encoding the glucosyltransferase required for synthesis of dhurrin in <i>Sorghum bicolor</i> (L. Moench). Plant and Cell Physiology, 2016, 57, 373-386.	3.1	34
75	Fusion of Ferredoxin and Cytochrome P450 Enables Direct Light-Driven Biosynthesis. ACS Chemical Biology, 2016, 11, 1862-1869.	3.4	67
76	Oxidation and cyclization of casbene in the biosynthesis of <i>Euphorbia</i> factors from mature seeds of <i>Euphorbia lathyris</i> L Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5082-9.	7.1	76
77	The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter. Scientific Reports, 2016, 6, 37079.	3.3	58
78	Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science, 2016, 354, 890-893.	12.6	222
79	Lepidopteran defence droplets - a composite physical and chemical weapon against potential predators. Scientific Reports, 2016, 6, 22407.	3.3	20
80	Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data. BMC Genomics, 2016, 17, 1021.	2.8	56
81	Expanding the Landscape of Diterpene Structural Diversity through Stereochemically Controlled Combinatorial Biosynthesis. Angewandte Chemie - International Edition, 2016, 55, 2142-2146.	13.8	134
82	Transfer of the cytochrome P450-dependent dhurrin pathway from <i>Sorghum bicolor</i> into <i>Nicotiana tabacum</i> chloroplasts for light-driven synthesis. Journal of Experimental Botany, 2016, 67, 2495-2506.	4.8	57
83	High-resolution PTP1B inhibition profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy: Proof-of-concept and antidiabetic constituents in crude extract of Eremophila lucida. Fìtoterapìâ, 2016, 110, 52-58.	2.2	50
84	Links of Conformational Sampling to Functional Plasticity and Clinical Phenotypes by Single Molecule Studies. Biophysical Journal, 2016, 110, 397a.	0.5	O
85	Apiose: one of nature's witty games. Glycobiology, 2016, 26, 430-442.	2.5	45
86	Identification of PTP1B and α-Glucosidase Inhibitory Serrulatanes from <i>Eremophila</i> spp. by Combined use of Dual High-Resolution PTP1B and α-Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR. Journal of Natural Products, 2016, 79, 1063-1072.	3.0	54
87	General and Stereocontrolled Approach to the Chemical Synthesis of Naturally Occurring Cyanogenic Glucosides. Journal of Natural Products, 2016, 79, 1198-1202.	3.0	27
88	Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC 6803. Metabolic Engineering, 2016, 33, 1-11.	7.0	66
89	Two key polymorphisms in a newly discovered allele of the Vitis vinifera TPS24 gene are responsible for the production of the rotundone precursor \hat{l}_{\pm} -guaiene. Journal of Experimental Botany, 2016, 67, 799-808.	4.8	62
90	Synthetic plant biology: The ultimate way to 'go green'. Planta Medica, 2016, 81, S1-S381.	1.3	O

#	Article	IF	CITATIONS
91	Single Molecule Activity Measurements of Cytochrome P450 Oxidoreductase Reveal the Existence of Two Discrete Functional States. Biophysical Journal, 2015, 108, 224a-225a.	0.5	O
92	Volatiles from the burnet moth <i>Zygaena filipendulae</i> (Lepidoptera) and associated flowers, and their involvement in mating communication. Physiological Entomology, 2015, 40, 284-295.	1.5	14
93	The bifurcation of the cyanogenic glucoside and glucosinolate biosynthetic pathways. Plant Journal, 2015, 84, 558-573.	5 . 7	45
94	Diversified glucosinolate metabolism: biosynthesis of hydrogen cyanide and of the hydroxynitrile glucoside alliarinoside in relation to sinigrin metabolism in Alliaria petiolata. Frontiers in Plant Science, 2015, 6, 926.	3.6	23
95	A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochemical Journal, 2015, 469, 375-389.	3.7	109
96	Vanillin–Bioconversion and Bioengineering of the Most Popular Plant Flavor and Its De Novo Biosynthesis in the Vanilla Orchid. Molecular Plant, 2015, 8, 40-57.	8.3	234
97	Nanodisc Films for Membrane Protein Studies by Neutron Reflection: Effect of the Protein Scaffold Choice. Langmuir, 2015, 31, 8386-8391.	3 . 5	18
98	Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. Journal of Experimental Botany, 2015, 66, 1817-1832.	4.8	189
99	Lotus japonicus flowers are defended by a cyanogenic \hat{l}^2 -glucosidase with highly restricted expression to essential reproductive organs. Plant Molecular Biology, 2015, 89, 21-34.	3.9	25
100	Scent emission profiles from Darwin's orchid – Angraecum sesquipedale: Investigation of the aldoxime metabolism using clustering analysis. Phytochemistry, 2015, 120, 3-18.	2.9	12
101	Metabolism, excretion and avoidance of cyanogenic glucosides in insects with different feeding specialisations. Insect Biochemistry and Molecular Biology, 2015, 66, 119-128.	2.7	27
102	Plasticity of specialized metabolism as mediated by dynamic metabolons. Trends in Plant Science, 2015, 20, 20-32.	8.8	86
103	NMR characterization of chemically synthesized branched α-dextrin model compounds. Carbohydrate Research, 2015, 403, 149-156.	2.3	25
104	Assembly of Highly Standardized Gene Fragments for High-Level Production of Porphyrins in <i>E. coli</i> . ACS Synthetic Biology, 2015, 4, 274-282.	3.8	15
105	IDENTIFICATION AND CHARACTERIZATION OF PRUNASIN HYDROLASES IN SWEET AND BITTER ALMONDS AND THEIR EXPRESSION IN NICOTIANA BENTHAMIANA PLANTS. Acta Horticulturae, 2014, , 83-89.	0.2	2
106	Manoyl Oxide (13R), the Biosynthetic Precursor of Forskolin, Is Synthesized in Specialized Root Cork Cells in <i>Coleus forskohlii</i>). Plant Physiology, 2014, 164, 1222-1236.	4.8	135
107	Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nature Communications, 2014, 5, 4037.	12.8	157
108	Editorial overview: Synthetic plant biology: the roots of a bio-based society. Current Opinion in Biotechnology, 2014, 26, ix-xvi.	6.6	2

#	Article	IF	Citations
109	Cyanogenic Glycosides: Synthesis, Physiology, and Phenotypic Plasticity. Annual Review of Plant Biology, 2014, 65, 155-185.	18.7	337
110	Single Molecule Activity Measurements of Cytochrome P450 Oxidoreductase Reveal the Existence of Two Discrete Functional States. ACS Chemical Biology, 2014, 9, 630-634.	3.4	55
111	Cassava genome from a wild ancestor to cultivated varieties. Nature Communications, 2014, 5, 5110.	12.8	230
112	Glucosinolate-Related Glucosides in Alliaria petiolata: Sources of Variation in the Plant and Different Metabolism in an Adapted Specialist Herbivore, Pieris rapae. Journal of Chemical Ecology, 2014, 40, 1063-1079.	1.8	23
113	Microbial Synthesis of the Forskolin Precursor Manoyl Oxide in an Enantiomerically Pure Form. Applied and Environmental Microbiology, 2014, 80, 7258-7265.	3.1	24
114	Redirecting Photosynthetic Electron Flow into Light-Driven Synthesis of Alternative Products Including High-Value Bioactive Natural Compounds. ACS Synthetic Biology, 2014, 3, 1-12.	3.8	74
115	Sequestration, tissue distribution and developmental transmission ofÂcyanogenic glucosides in a specialist insect herbivore. Insect Biochemistry and Molecular Biology, 2014, 44, 44-53.	2.7	35
116	The evolutionary appearance of nonâ€cyanogenic hydroxynitrile glucosides in the <i><scp>L</scp>otus</i> genus is accompanied by the substrate specialization of paralogous β–glucosidases resulting from a crucial amino acid substitution. Plant Journal, 2014, 79, 299-311.	5.7	15
117	Synthesis of the allelochemical alliarinoside present in garlic mustard (Alliaria petiolata), an invasive plant species in North America. Carbohydrate Research, 2014, 394, 13-16.	2.3	5
118	Transcriptional regulation of de novo biosynthesis of cyanogenic glucosides throughout the life-cycle of the burnet moth Zygaena filipendulae (Lepidoptera). Insect Biochemistry and Molecular Biology, 2014, 49, 80-89.	2.7	19
119	Chapter 12. Disruptive innovation: channeling photosynthetic electron flow into light-driven synthesis of high-value products. Synthetic Biology, 2014, , 330-359.	0.2	5
120	The Multiple Strategies of an Insect Herbivore to Overcome Plant Cyanogenic Glucoside Defence. PLoS ONE, 2014, 9, e91337.	2.5	68
121	Anchoring a Plant Cytochrome P450 via PsaM to the Thylakoids in Synechococcus sp. PCC 7002: Evidence for Light-Driven Biosynthesis. PLoS ONE, 2014, 9, e102184.	2.5	44
122	Chemical Defense Balanced by Sequestration and De Novo Biosynthesis in a Lepidopteran Specialist. PLoS ONE, 2014, 9, e108745.	2.5	20
123	Antibacterial activity of crude extracts from Santalum spictatum and Acacia ligulata. Planta Medica, 2014, 80, .	1.3	0
124	Co-occurrence of cyanogenic glucosides and their derivatives as a common feature in metabolic profiles of almond and cassava. Planta Medica, 2014, 80, .	1.3	0
125	Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum. Plant Physiology and Biochemistry, 2013, 73, 83-92.	5.8	61
126	Male-to-female transfer of 5-hydroxytryptophan glucoside during mating in Zygaena filipendulae (Lepidoptera). Insect Biochemistry and Molecular Biology, 2013, 43, 1037-1044.	2.7	12

#	Article	IF	Citations
127	Redirecting Photosynthetic Reducing Power toward Bioactive Natural Product Synthesis. ACS Synthetic Biology, 2013, 2, 308-315.	3.8	85
128	Plant chemical defense: at what cost?. Trends in Plant Science, 2013, 18, 250-258.	8.8	277
129	Amphipol trapping of a functional CYP system. Biotechnology and Applied Biochemistry, 2013, 60, 119-127.	3.1	13
130	Comparative genomics analysis in <scp>P</scp> runoideae to identify biologically relevant polymorphisms. Plant Biotechnology Journal, 2013, 11, 883-893.	8.3	20
131	Homage to Professor Meinhart H. Zenk: Crowd accelerated research and innovation. Phytochemistry, 2013, 91, 20-28.	2.9	O
132	Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging. Plant Journal, 2013, 74, 1059-1071.	5.7	64
133	Isolation of Monodisperse Nanodisc-Reconstituted Membrane Proteins Using Free Flow Electrophoresis. Analytical Chemistry, 2013, 85, 3497-3500.	6.5	19
134	Monitoring Shifts in the Conformation Equilibrium of the Membrane Protein Cytochrome P450 Reductase (POR) in Nanodiscs. Journal of Biological Chemistry, 2012, 287, 34596-34603.	3.4	59
135	Prunasin Hydrolases during Fruit Development in Sweet and Bitter Almonds Â. Plant Physiology, 2012, 158, 1916-1932.	4.8	40
136	Light-driven chemical synthesis. Trends in Plant Science, 2012, 17, 60-63.	8.8	25
137	A combined biochemical screen and TILLING approach identifies mutations in <i>Sorghum bicolor</i> L. Moench resulting in acyanogenic forage production. Plant Biotechnology Journal, 2012, 10, 54-66.	8.3	106
138	Possible evolution of alliarinoside biosynthesis from the glucosinolate pathway in <i>Alliariaâ€∫ petiolata </i> . FEBS Journal, 2012, 279, 1545-1562.	4.7	18
139	Biosynthesis of rhodiocyanosides in Lotus japonicus: Rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile. Phytochemistry, 2012, 77, 260-267.	2.9	27
140	Photosystem I from plants as a bacterial cytochrome P450 surrogate electron donor: terminal hydroxylation of branched hydrocarbon chains. Biotechnology Letters, 2012, 34, 239-245.	2.2	21
141	Light-Driven Cytochrome P450 Hydroxylations. ACS Chemical Biology, 2011, 6, 533-539.	3.4	76
142	Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in <i>Lotus japonicus</i> and suggests the repeated evolution of this chemical defence pathway. Plant Journal, 2011, 68, 273-286.	5.7	162
143	Characterization and expression profile of two UDPâ€glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava. Plant Journal, 2011, 68, 287-301.	5.7	60
144	Cyanogenic glucosides in the biological warfare between plants and insects: The Burnet moth-Birdsfoot trefoil model system. Phytochemistry, 2011, 72, 1585-1592.	2.9	73

#	Article	IF	CITATIONS
145	Homology modeling of the three membrane proteins of the dhurrin metabolon: Catalytic sites, membrane surface association and protein–protein interactions. Phytochemistry, 2011, 72, 2113-2123.	2.9	34
146	Phenylalanine derived cyanogenic diglucosides from Eucalyptus camphora and their abundances in relation to ontogeny and tissue type. Phytochemistry, 2011, 72, 2325-2334.	2.9	41
147	Conformational changes of the NADPH-dependent cytochrome P450 reductase in the course of electron transfer to cytochromes P450. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 132-138.	2.3	95
148	Biosynthesis of the Cyanogenic Glucosides Linamarin and Lotaustralin in Cassava: Isolation, Biochemical Characterization, and Expression Pattern of CYP71E7, the Oxime-Metabolizing Cytochrome P450 Enzyme. Plant Physiology, 2011, 155, 282-292.	4.8	83
149	Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects. Nature Communications, 2011, 2, 273.	12.8	115
150	First Principles Insight into the \hat{l} ±-Glucan Structures of Starch: Their Synthesis, Conformation, and Hydration. Chemical Reviews, 2010, 110, 2049-2080.	47.7	92
151	Elliptical Structure of Phospholipid Bilayer Nanodiscs Encapsulated by Scaffold Proteins: Casting the Roles of the Lipids and the Protein. Journal of the American Chemical Society, 2010, 132, 13713-13722.	13.7	117
152	Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry, 2010, 71, 132-141.	2.9	152
153	Functional diversifications of cyanogenic glucosides. Current Opinion in Plant Biology, 2010, 13, 337-346.	7.1	210
154	Dissipation of cyanogenic glucosides and cyanide in soil amended with white clover (Trifolium repens) Tj ETQq0	0 0 ₈ .8BT /0	Overlock 10 Tf
155	Metabolomic, Transcriptional, Hormonal, and Signaling Cross-Talk in Superroot2. Molecular Plant, 2010, 3, 192-211.	8.3	38
156	Improved vanillin production in baker's yeast through in silico design. Microbial Cell Factories, 2010, 9, 84.	4.0	226
157	Comparative spectroscopic and rheological studies on crude and purified soluble barley and oat \hat{l}^2 -glucan preparations. Food Research International, 2010, 43, 2417-2424.	6.2	65
158	Dynamic Metabolons. Science, 2010, 330, 1328-1329.	12.6	115
159	CYP704B1 Is a Long-Chain Fatty Acid <i>iï%</i> -Hydroxylase Essential for Sporopollenin Synthesis in Pollen of Arabidopsis Â. Plant Physiology, 2009, 151, 574-589.	4.8	280
160	The Metabolic Response of Arabidopsis Roots to Oxidative Stress is Distinct from that of Heterotrophic Cells in Culture and Highlights a Complex Relationship between the Levels of Transcripts, Metabolites, and Flux. Molecular Plant, 2009, 2, 390-406.	8.3	155
161	De Novo Biosynthesis of Vanillin in Fission Yeast (<i>Schizosaccharomyces pombe</i>) and Baker's Yeast (<i>Saccharomyces cerevisiae</i>). Applied and Environmental Microbiology, 2009, 75, 2765-2774.	3.1	325
162	454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides. BMC Genomics, 2009, 10, 574.	2.8	61

#	Article	IF	CITATIONS
163	Tissue and cellular localization of individual βâ€glycosidases using a substrateâ€specific sugar reducing assay. Plant Journal, 2009, 60, 894-906.	5.7	25
164	Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry, 2009, 70, 325-347.	2.9	226
165	Substrate specificities of family 1 UGTs gained by domain swapping. Phytochemistry, 2009, 70, 473-482.	2.9	35
166	Functional expression of N-terminally tagged membrane bound cytochrome P450. Protein Expression and Purification, 2009, 68, 18-21.	1.3	4
167	Molecular Interactions between Barley and Oat \hat{l}^2 -Glucans and Phenolic Derivatives. Journal of Agricultural and Food Chemistry, 2009, 57, 2056-2064.	5.2	27
168	Effect of Glucuronosylation on Anthocyanin Color Stability. Journal of Agricultural and Food Chemistry, 2009, 57, 3149-3155.	5.2	16
169	CYANOGENIC GLUCOSIDE PATTERNS IN SWEET AND BITTER ALMONDS. Acta Horticulturae, 2009, , 481-486.	0.2	2
170	Toxic Moths: Source of a Truly Safe Delicacy. Journal of Ethnobiology, 2009, 29, 64-76.	2.1	44
171	The development of plants as environmentally benign green factories merging into synthetic biology. IOP Conference Series: Earth and Environmental Science, 2009, 6, 182007.	0.3	O
172	Metabolon formation in dhurrin biosynthesis. Phytochemistry, 2008, 69, 88-98.	2.9	125
173	Diversification of an ancient theme: Hydroxynitrile glucosides. Phytochemistry, 2008, 69, 1507-1516.	2.9	64
174	Cyanogenesis in plants and arthropods. Phytochemistry, 2008, 69, 1457-1468.	2.9	215
175	Î ² -Glucosidases as detonators of plant chemical defense. Phytochemistry, 2008, 69, 1795-1813.	2.9	459
176	Hydroxynitrile glucosides. Phytochemistry, 2008, 69, 1947-1961.	2.9	53
177	Leaching of cyanogenic glucosides and cyanide from white clover green manure. Chemosphere, 2008, 72, 897-904.	8.2	26
178	The $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Clucosidases Responsible for Bioactivation of Hydroxynitrile Glucosides in $\langle i \rangle$ Lotus japonicus $\langle i \rangle$ Â Â. Plant Physiology, 2008, 147, 1072-1091.	4.8	60
179	Bitterness in Almonds. Plant Physiology, 2008, 146, 1040-1052.	4.8	113
180	Catalytic Key Amino Acids and UDP-Sugar Donor Specificity of a Plant Glucuronosyltransferase, UGT94B1: Molecular Modeling Substantiated by Site-Specific Mutagenesis and Biochemical Analyses. Plant Physiology, 2008, 148, 1295-1308.	4.8	93

#	Article	IF	CITATIONS
181	CYP703 Is an Ancient Cytochrome P450 in Land Plants Catalyzing in-Chain Hydroxylation of Lauric Acid to Provide Building Blocks for Sporopollenin Synthesis in Pollen. Plant Cell, 2007, 19, 1473-1487.	6.6	332
182	Improved cloning and expression of cytochrome P450s and cytochrome P450 reductase in yeast. Protein Expression and Purification, 2007, 56, 121-127.	1.3	52
183	The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Insect Biochemistry and Molecular Biology, 2007, 37, 10-18.	2.7	66
184	Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera,) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 622 55
185	Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18848-18853.	7.1	100
186	Lessons learned from metabolic engineering of cyanogenic glucosides. Metabolomics, 2007, 3, 383-398.	3.0	35
187	Biofortification of Cassava Using Molecular Breeding. , 2007, , 409-411.		0
188	Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochemistry Reviews, 2006, 5, 309-329.	6.5	122
189	Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus. Planta, 2006, 223, 1010-1023.	3.2	34
190	Response to Kutchan: Genetic engineering, natural variation and substantial equivalence. Trends in Biotechnology, 2005, 23, 383-384.	9.3	1
191	Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Current Opinion in Plant Biology, 2005, 8, 280-291.	7.1	476
192	Chemical Synthesis of a Dual Branched Malto-Decaose: A Potential Substrate for α-Amylases. ChemBioChem, 2005, 6, 1224-1233.	2.6	16
193	Flavonoids in flowers of 16 Kalanchoë blossfeldiana varieties. Phytochemistry, 2005, 66, 2829-2835.	2.9	58
194	Cytochrome P450s in Plants. , 2005, , 553-583.		19
195	Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1779-1784.	7.1	194
196	Cassava Plants with a Depleted Cyanogenic Glucoside Content in Leaves and Tubers. Distribution of Cyanogenic Glucosides, Their Site of Synthesis and Transport, and Blockage of the Biosynthesis by RNA Interference Technology. Plant Physiology, 2005, 139, 363-374.	4.8	232
197	Determination of Catalytic Key Amino Acids and UDP Sugar Donor Specificity of the Cyanohydrin Glycosyltransferase UGT85B1 from Sorghum bicolor. Molecular Modeling Substantiated by Site-Specific Mutagenesis and Biochemical Analyses. Plant Physiology, 2005, 139, 664-673.	4.8	59
198	Comparative Study of Small Linear and Branched α-Glucans Using Size Exclusion Chromatography and Static and Dynamic Light Scattering#. Biomacromolecules, 2005, 6, 143-151.	5.4	27

#	Article	IF	Citations
199	Plant biotechnology in Europe: a changing environment and landscape. Trends in Plant Science, 2005, 10, 562-564.	8.8	1
200	Cyanogenic glucosides and plant–insect interactions. Phytochemistry, 2004, 65, 293-306.	2.9	294
201	Raman Spectroscopic Analysis of Cyanogenic Glucosides in Plants: Development of a Flow Injection Surface-Enhanced Raman Scatter (FI-SERS) Method for Determination of Cyanide. Applied Spectroscopy, 2004, 58, 212-217.	2.2	26
202	Chemical synthesis of methyl 6′-α-maltosyl-α-maltotrioside and its use for investigation of the action of starch synthase II. Carbohydrate Research, 2003, 338, 189-197.	2.3	21
203	On the origin of family 1 plant glycosyltransferases. Phytochemistry, 2003, 62, 399-413.	2.9	261
204	The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolor. Phytochemistry, 2003, 64, 143-151.	2.9	87
205	Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Current Opinion in Biotechnology, 2003, 14, 151-162.	6.6	253
206	The phosphorylation site in double helical amylopectin as investigated by a combined approach using chemical synthesis, crystallography and molecular modeling. FEBS Letters, 2003, 541, 137-144.	2.8	29
207	Dhurrin Synthesis in Sorghum Is Regulated at the Transcriptional Level and Induced by Nitrogen Fertilization in Older Plants. Plant Physiology, 2002, 129, 1222-1231.	4.8	150
208	Leucine-Derived Cyano Glucosides in Barley. Plant Physiology, 2002, 129, 1066-1075.	4.8	67
209	A Short Route to Malto-trisaccharide Synthons: Synthesis of the Branched Nonasaccharide, 6′′′-α-Maltotriosyl-maltohexaose. Synthesis, 2002, 2002, 418-426.	2.3	15
210	Use of methylotropic yeast Pichia, pastoris for expression of cytochromes P450. Methods in Enzymology, 2002, 357, 333-342.	1.0	14
211	Production of highly phosphorylated glycopolymers by expression of R1 in Escherichia coli. Carbohydrate Research, 2002, 337, 327-333.	2.3	9
212	Structural, Physicochemical, and Pasting Properties of Starches from Potato Plants with Repressedr1-Geneâ€. Biomacromolecules, 2001, 2, 836-843.	5.4	72
213	The action of starch synthase II on 6′′′-α-maltotriosyl-maltohexaose comprising the branch point of amylopectin. FEBS Journal, 2001, 268, 4878-4884.	0.2	17
214	Modulation of activity and substrate binding modes by mutation of single and double subsites $+1/+2$ and \hat{a}^{2} of barley \hat{l} -amylase 1. FEBS Journal, 2001, 268, 6545-6558.	0.2	33
215	Synthesis of 4′-O-acetyl-maltose and α-d-galactopyranosyl-(1→4)-d-glucopyranose for biochemical studies of amylose biosynthesis. Carbohydrate Research, 2001, 330, 309-318.	2.3	14
216	Active Oxygen Produced during Selective Excitation of Photosystem I Is Damaging Not Only to Photosystem I, But Also to Photosystem II. Plant Physiology, 2001, 125, 2007-2015.	4.8	85

#	Article	lF	CITATIONS
217	Resistance to an Herbivore Through Engineered Cyanogenic Glucoside Synthesis. Science, 2001, 293, 1826-1828.	12.6	267
218	Starch molecular structure and phosphorylation investigated by a combined chromatographic and chemometric approach. Carbohydrate Polymers, 2000, 41, 163-174.	10.2	79
219	Photoinhibition of Photosystem I in field-grown barley (Hordeum vulgare L.): Induction, recovery and acclimation. Photosynthesis Research, 2000, 64, 53-61.	2.9	72
220	Cytochromes P-450 from Cassava (Manihot esculentaCrantz) Catalyzing the First Steps in the Biosynthesis of the Cyanogenic Glucosides Linamarin and Lotaustralin. Journal of Biological Chemistry, 2000, 275, 1966-1975.	3.4	177
221	New Phenyl 6,4′-Substituted-1-Thio-β-Maltosides, Building Blocks for The Synthesis of Linear and Branched Malto-oligosaccharides. Synthesis, 2000, 2000, 1547-1556.	2.3	10
222	Transgenic Tobacco and Arabidopsis Plants Expressing the Two Multifunctional Sorghum Cytochrome P450 Enzymes, CYP79A1 and CYP71E1, Are Cyanogenic and Accumulate Metabolites Derived from Intermediates in Dhurrin Biosynthesis. Plant Physiology, 2000, 123, 1437-1448.	4.8	85
223	The distribution of covalently bound phosphate in the starch granule in relation to starch crystallinity. International Journal of Biological Macromolecules, 2000, 27, 211-218.	7.5	124
224	The Biosynthesis, Degradation, Transport and Possible Function of Cyanogenic Glucosides. Recent Advances in Phytochemistry, 2000, 34, 191-247.	0.5	32
225	Cloning and Expression of Cytochrome P450 Enzymes Catalyzing the Conversion of Tyrosine to p-Hydroxyphenylacetaldoxime in the Biosynthesis of Cyanogenic Glucosides in Triglochin maritima. Plant Physiology, 2000, 122, 1311-1322.	4.8	57
226	The UDP-glucose:p-Hydroxymandelonitrile-O-Glucosyltransferase That Catalyzes the Last Step in Synthesis of the Cyanogenic Glucoside Dhurrin in Sorghum bicolor. Journal of Biological Chemistry, 1999, 274, 35483-35491.	3.4	165
227	In Vitro Biosynthesis of Phosphorylated Starch in Intact Potato Amyloplasts 1. Plant Physiology, 1999, 119, 455-462.	4.8	42
228	Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor. Plant Journal, 1999, 20, 663-671.	5.7	105
229	Chemical synthesis of 6‴α-maltotriosyl-maltohexaose as substrate for enzymes in starch biosynthesis and degradation. Carbohydrate Research, 1999, 320, 19-30.	2.3	39
230	Title is missing!. Photosynthesis Research, 1999, 60, 75-86.	2.9	73
231	Substrate Specificity of the Cytochrome P450 Enzymes CYP79A1 and CYP71E1 Involved in the Biosynthesis of the Cyanogenic Glucoside Dhurrin inSorghum bicolor(L.) Moench. Archives of Biochemistry and Biophysics, 1999, 363, 9-18.	3.0	96
232	Biosynthesis of Cyanogenic Glucosides in Triglochin maritima and the Involvement of Cytochrome P450 Enzymes. Archives of Biochemistry and Biophysics, 1999, 368, 121-130.	3.0	35
233	Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively. Biochemical Journal, 1999, 340, 183-191.	3.7	80
234	Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively. Biochemical Journal, 1999, 340, 183.	3.7	36

#	Article	IF	Citations
235	Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor., 1999, 20, 663.		1
236	Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively. Biochemical Journal, 1999, 340 (Pt 1), 183-91.	3.7	20
237	The degree of starch phosphorylation is related to the chain length distribution of the neutral and the phosphorylated chains of amylopectin. Carbohydrate Research, 1998, 307, 45-54.	2.3	139
238	Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Molecular Biology, 1998, 36, 393-405.	3.9	180
239	Analysis of starch-bound glucose 3-phosphate and glucose 6-phosphate using controlled acid treatment combined with high-performance anion-exchange chromatography. Journal of Chromatography A, 1998, 829, 385-391.	3.7	53
240	Double Triton X-114 Phase Partitioning for the Purification of Plant Cytochromes P450 and Removal of Green Pigments. Protein Expression and Purification, 1998, 13, 366-372.	1.3	5
241	Photosystem I Is an Early Target of Photoinhibition in Barley Illuminated at Chilling Temperatures1. Plant Physiology, 1998, 116, 755-764.	4.8	172
242	Phosphorylated α(1→4)Glucans as Substrate for Potato Starch-Branching Enzyme I1. Plant Physiology, 1998, 117, 869-875.	4.8	27
243	Molecular aspects of photosystem I. Physiologia Plantarum, 1997, 100, 842-851.	5.2	4
244	Isolation and Reconstitution of Cytochrome P450ox and in Vitro Reconstitution of the Entire Biosynthetic Pathway of the Cyanogenic Glucoside Dhurrin from Sorghum. Plant Physiology, 1997, 115, 1661-1670.	4.8	122
245	Molecular aspects of photosystem I. Physiologia Plantarum, 1997, 100, 842-851.	5.2	42
246	[30] Isolation of plant and recombinant CYP79. Methods in Enzymology, 1996, 272, 268-274.	1.0	4
247	The photosystem I mutant viridis-zb63 of barley (Hordeum vulgare) contains low amounts of active but unstable photosystem I. Physiologia Plantarum, 1996, 98, 637-644.	5.2	21
248	Reconstitution of Barley Photosystem I with Modified PSI-C Allows Identification of Domains Interacting with PSI-D and PSI-A/B. Journal of Biological Chemistry, 1996, 271, 8996-9001.	3.4	48
249	Isolation and Reconstitution of the Heme-Thiolate Protein Obtusifoliol 14α-Demethylase from Sorghum bicolor (L.) Moench. Journal of Biological Chemistry, 1996, 271, 32944-32950.	3.4	43
250	The photosystem I mutant viridis-zb63 of barley (Hordeum vulgare) contains low amounts of active but unstable photosystem I. Physiologia Plantarum, 1996, 98, 637-644.	5.2	2
251	A convenient method for enzymatic synthesis of radiolabelled glucose-1,6-bisphosphate. Journal of Labelled Compounds and Radiopharmaceuticals, 1995, 36, 679-684.	1.0	4
252	Chemical synthesis of 6′-α-maltosyl-maltotriose, a branched oligosaccharide representing the branch point of starch. Carbohydrate Research, 1995, 277, 109-123.	2.3	51

#	Article	IF	Citations
253	Reconstitution of barley photosystem I reveals that the N-terminus of the PSI-D subunit is essential for tight binding of PSI-C. Physiologia Plantarum, 1995, 95, 19-26.	5 . 2	26
254	The biosynthesis of cyanogenic glucosides in roots of cassava. Phytochemistry, 1995, 39, 323-326.	2.9	54
255	Cytochrome P-450TYR Is a Multifunctional Heme-Thiolate Enzyme Catalyzing the Conversion of L-Tyrosine to p-Hydroxyphenylacetaldehyde Oxime in the Biosynthesis of the Cyanogenic Glucoside Dhurrin in Sorghum bicolor (L.) Moench. Journal of Biological Chemistry, 1995, 270, 3506-3511.	3.4	152
256	A General Method Based on the Use of <i>N</i> -Bromosuccinimide for Removal of the Thiophenyl Group at the Anomeric Position to Generate A Reducing Sugar with the Original Protecting Groups Still Present. Journal of Carbohydrate Chemistry, 1995, 14, 1279-1294.	1.1	76
257	Characterization of Cytochrome P450TYR, A Multifunctional Haem-Thiolate AZ-Hydroxylase Involved in the Biosynthesis of the Cyanogenic Glucoside Dhurrin. Drug Metabolism and Drug Interactions, 1995, 12, 285-298.	0.3	12
258	The Primary Sequence of Cytochrome P450tyr, the MultifunctionalN-Hydroxylase Catalyzing the Conversion of L-Tyrosine top-Hydroxyphenylacetaldehyde Oxime in the Biosynthesis of the Cyanogenic Glucoside Dhurrin in Sorghum bicolor (L.) Moench. Archives of Biochemistry and Biophysics, 1995, 323, 177-186.	3.0	136
259	Purification and Characterization of Recombinant Cytochrome P450TYR Expressed at High Levels in Escherichia coli. Archives of Biochemistry and Biophysics, 1995, 322, 369-377.	3.0	105
260	Antisense Repression of PsaE mRNA in Transgenic Barley (Hordeum vulgare L.)., 1995,, 1129-1132.		1
261	Biosynthesis of cyanogenic glucosides. Elucidation of the pathway and characterization of the cytochromes P-450 involved., 1995,, 227-242.		8
262	Reconstitution of barley photosystem I reveals that the N-terminus of the PSI-D subunit is essential for tight binding of PSI-C. Physiologia Plantarum, 1995, 95, 19-26.	5.2	2
263	On the Absence of 2-(2'-Cyclopentenyl)glycine-Derived Cyanogenic Glycosides in Cassava, Manihot esculenta Crantz Acta Chemica Scandinavica, 1995, 49, 540-542.	0.7	7
264	Characterization of E. coli Expressed PSI-C Mutants. , 1995, , 1133-1136.		0
265	Import of the barley PSI-F subunit into the thylakoid lumen of isolated chloroplasts. Plant Molecular Biology, 1994, 26, 1223-1229.	3.9	15
266	Chemical synthesis and NMR spectra of a protected branched-tetrasaccharide thioglycoside, a useful intermediate for the synthesis of branched oligosaccharides. Carbohydrate Research, 1994, 252, 69-84.	2.3	28
267	Starch Phosphorylation in Potato Tubers Proceeds Concurrently with de Novo Biosynthesis of Starch. Plant Physiology, 1994, 105, 111-117.	4.8	96
268	Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9740-9744.	7.1	83
269	Multiple mechanisms for the targeting of photosystem I subunits F, H, K, L, and N into and across the thylakoid membrane Journal of Biological Chemistry, 1994, 269, 27303-27309.	3.4	35
270	Cyanogenic Glycosides in Cassava, Manihot esculenta Crantz Acta Chemica Scandinavica, 1994, 48, 178-180.	0.7	24

#	Article	IF	CITATIONS
271	Multiple mechanisms for the targeting of photosystem I subunits F, H, K, L, and N into and across the thylakoid membrane. Journal of Biological Chemistry, 1994, 269, 27303-9.	3.4	33
272	Import of barley photosystem I subunit N into the thylakoid lumen is mediated by a bipartite presequence lacking an intermediate processing site. Role of the delta pH in translocation across the thylakoid membrane. Journal of Biological Chemistry, 1994, 269, 3762-6.	3.4	68
273	Precursors of one integral and five lumenal thylakoid proteins are imported by isolated pea and barley thylakoids: optimisation of in vitro assays. Plant Molecular Biology, 1993, 23, 717-725.	3.9	47
274	Synthesis of Benzylglucosinolate in Tropaeolum majus L. (Isothiocyanates as Potent Enzyme) Tj ETQq0 0 0 rgBT	/Oyerlock 4.8	10 Tf 50 622
275	The PSI-K subunit of photosystem I from barley (Hordeum vulgare L.). Evidence for a gene duplication of an ancestral PSI-G/K gene. Journal of Biological Chemistry, 1993, 268, 18912-6.	3.4	41
276	The biosynthesis of cyanogenic glucosides in seedlings of cassava (Manihot esculenta Crantz). Archives of Biochemistry and Biophysics, 1992, 292, 141-150.	3.0	91
277	The PSI-E subunit of photosystem I binds ferredoxin:NADP+oxidoreductase. FEBS Letters, 1992, 311, 169-173.	2.8	139
278	A cDNA clone from barley encoding the precursor from the photosystem I polypeptide PSI-G: Sequence similarity to PSI-K. Plant Molecular Biology, 1992, 18, 989-994.	3.9	29
279	A membrane-bound monoheme cytochrome c551 of a novel type is the immediate electron donor to P840 of the Chlorobium vibrioforme photosynthetic reaction center complex. Journal of Biological Chemistry, 1992, 267, 21139-45.	3.4	66
280	2-nitro-3-(p-hydroxyphenyl)propionate and aci-1-nitro-2-(p-hydroxyphenyl)ethane, two intermediates in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 487-491.	7.1	35
281	Involvement of Cytochrome P-450 in the Biosynthesis of Dhurrin in <i>Sorghum bicolor</i> (L.) Moench. Plant Physiology, 1991, 96, 10-17.	4.8	70
282	Isolation and characterization of a cDNA clone encoding an 18-kDa hydrophobic photosystem I subunit (PSI-L) from barley (Hordeum vulgare L.) Journal of Biological Chemistry, 1991, 266, 6767-6773.	3.4	32
283	Isolation and characterization of a cDNA clone encoding an 18-kDa hydrophobic photosystem I subunit (PSI-L) from barley (Hordeum vulgare L.). Journal of Biological Chemistry, 1991, 266, 6767-73.	3.4	30
284	Toxin production in Pyrenophora teres, the ascomycete causing the net-spot blotch disease of barley (Hordeum vulgare L.). Journal of Biological Chemistry, 1991, 266, 13329-35.	3.4	22
285	Photosystem I polypeptides. Physiologia Plantarum, 1990, 78, 484-494.	5.2	69
286	Nearest Neighbour Analysis of the Photosystem I Subunits in Barley and Their Binding of Ferredoxin. , 1990, , 1631-1634.		4
287	The biosynthesis of cyanogenic glucosides in higher plants. Identification of three hydroxylation steps in the biosynthesis of dhurrin in Sorghum bicolor (L.) Moench and the involvement of 1-ACI-nitro-2-(p-hydroxyphenyl)ethane as an intermediate Journal of Biological Chemistry, 1990, 265, 21114-21121.	3.4	42
288	Photosystem I polypeptides. Physiologia Plantarum, 1990, 78, 484-494.	5.2	14

#	Article	IF	CITATIONS
289	Characterization of a cDNA Clone for the PsaE Gene from Barley and Plasma Desorption Mass Spectrometry of the Corresponding Photosystem I Polypeptide PSI-E., 1990,, 2515-2518.		О
290	Photosystem I in Barley: Subunit PSI-F is Not Essential for the Interaction with Plastocyanin., 1990,, 1639-1642.		1
291	Chloroplast Encoded Photosystem I Polypeptides of Barley. , 1990, , 1483-1490.		2
292	The biosynthesis of cyanogenic glucosides in higher plants. Identification of three hydroxylation steps in the biosynthesis of dhurrin in Sorghum bicolor (L.) Moench and the involvement of 1-ACI-nitro-2-(p-hydroxyphenyl)ethane as an intermediate. Journal of Biological Chemistry, 1990, 265, 21114-21.	3.4	37
293	Biosynthesis of the Cyanogenic Glucoside Dhurrin in Seedlings of <i>Sorghum bicolor</i> (L.) Moench and Partial Purification of the Enzyme System Involved. Plant Physiology, 1989, 90, 1552-1559.	4.8	149
294	Amino acid sequence of the 9-kDa iron-sulfur protein of photosystem I in barley. Carlsberg Research Communications, 1989, 54, 11-15.	1.8	22
295	A cDNA clone encoding the precursor for a 10.2 kDa photosystem I polypeptide of barley. FEBS Letters, 1989, 250, 575-579.	2.8	42
296	The primary structure of a 4.0-kDa photosystem I polypeptide encoded by the chloroplast psal gene. Journal of Biological Chemistry, 1989, 264, 18402-18406.	3.4	52
297	Subunit Composition of Photosystem I and Identification of Center X as a [4Fe-4S] Iron-Sulfur Cluster. Journal of Biological Chemistry, 1989, 264, 6929-6934.	3.4	56
298	The biosynthesis of cyanogenic glucosides in higher plants. Journal of Biological Chemistry, 1989, 264, 19487-19494.	3.4	67
299	Subunit composition of photosystem I and identification of center X as a [4Fe-4S] iron-sulfur cluster. Journal of Biological Chemistry, 1989, 264, 6929-34.	3.4	44
300	The primary structure of a 4.0-kDa photosystem I polypeptide encoded by the chloroplast psal gene. Journal of Biological Chemistry, 1989, 264, 18402-6.	3.4	49
301	The biosynthesis of cyanogenic glucosides in higher plants. The (E)- and (Z)-isomers of p-hydroxyphenylacetaldehyde oxime as intermediates in the biosynthesis of dhurrin in Sorghum bicolor (L.) Moench. Journal of Biological Chemistry, 1989, 264, 19487-94.	3.4	49
302	Partial amino acid sequences of two nuclear-encoded Photosystem I polypeptides from barley. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 933, 501-505.	1.0	28
303	A cDNA clone encoding a 10.8 kDa photosystem I polypeptide of barley. FEBS Letters, 1988, 237, 108-112.	2.8	55
304	Cyanogenic Glucosides: The Biosynthetic Pathway and the Enzyme System Involved. Novartis Foundation Symposium, 1988, 140, 49-66.	1.1	14
305	Acid-labile sulfide and zero-valence sulfur in plant extracts containing chlorophyll and ionic detergents. Analytical Biochemistry, 1987, 164, 307-314.	2.4	10
306	The Organization of the Fe-S Acceptors of Photosystem 1., 1987,, 49-52.		1

#	Article	IF	CITATIONS
307	Identification of a chloroplast-encoded 9-kDa polypeptide as a 2[4Fe-4S] protein carrying centers A and B of photosystem I Journal of Biological Chemistry, 1987, 262, 12676-12684.	3.4	143
308	Analysis of Isolated PS I Polypeptides for Acid Labile Sulfide., 1987,, 53-56.		O
309	Identification of a chloroplast-encoded 9-kDa polypeptide as a 2[4Fe-4S] protein carrying centers A and B of photosystem I. Journal of Biological Chemistry, 1987, 262, 12676-84.	3.4	123
310	The 110-kDa reaction center protein of photosystem I, P700-chlorophyll a-protein 1, is an iron-sulfur protein Journal of Biological Chemistry, 1986, 261, 14292-14300.	3.4	73
311	The 110-kDa reaction center protein of photosystem I, P700-chlorophyll a-protein 1, is an iron-sulfur protein. Journal of Biological Chemistry, 1986, 261, 14292-300.	3.4	61
312	Electron Microscopic Characteristics of Photosystem II Preparations and Their Inactivation and Reactivation with Respect to Oxygen Evolution., 1984,, 219-222.		3
313	Separation of the Photosystems with Retention of their Photochemical Activities. , 1984, , 203-206.		O
314	Pigment and acyl lipid composition of photosystem I and II vesicles and of photosynthetic mutants in barley. Carlsberg Research Communications, 1983, 48, 131-148.	1.8	45
315	A thylakoid polypeptide involved in the reconstitution of photosynthetic oxygen evolution. Carlsberg Research Communications, 1983, 48, 161-185.	1.8	43
316	The Use of Chloroplast Proteins in Crop Improvement. , 1983, , 249-257.		0
317	Reactivation of photosynthetic oxygen evolution in tris-inactivated inside-out photosystem II vesicles from spinach. Carlsberg Research Communications, 1982, 47, 187-198.	1.8	24
318	Isolation and characterization of cytochromeb-559 from chloroplasts and etioplasts of barley. Carlsberg Research Communications, 1982, 47, 245-262.	1.8	17
319	Comparison of the EPR properties of Photosytem I iron-sulphur centres A and B in spinach and barley. Biochimica Et Biophysica Acta - Bioenergetics, 1981, 634, 249-255.	1.0	31
320	Analysis of proanthocyanidins in wild-type and mutant barley (Hordeum vulgare L.). Carlsberg Research Communications, 1981, 46, 53-64.	1.8	29
321	Fluorescence detected magnetic resonance (FDMR) spectroscopy of chlorophyll-proteins from barley. Carlsberg Research Communications, 1981, 46, 183-194.	1.8	16
322	Polypeptide composition of an oxygen evolving photosystem II vesicle from spinach chloroplasts. Carlsberg Research Communications, 1981, 46, 227-242.	1.8	81
323	Electron paramagnetic resonance spectrometry of photosystem I mutants in barley. Carlsberg Research Communications, 1981, 46, 373-382.	1.8	20
324	Characterization of six putative photosystem I mutants in barley. Carlsberg Research Communications, 1980, 45, 315-328.	1.8	57

#	Article	IF	CITATIONS
325	A photosystem I mutant in barley (Hordeum vulgare L.). Carlsberg Research Communications, 1980, 45, 87-99.	1.8	25
326	EPR detection of the primary photochemistry of photosystem II in a barley mutant lacking photosystem I activity. FEBS Letters, 1980, 121, 355-357.	2.8	16
327	The biosynthesis of cyanogenic glucosides in higher plants. Channeling of intermediates in dhurrin biosynthesis by a microsomal system from Sorghum bicolor (linn) Moench. Journal of Biological Chemistry, 1980, 255, 3049-56.	3.4	113
328	Chlorophyll-proteins of thylakoids from wild-type and mutants of barley (Hordeum vulgare L.). Carlsberg Research Communications, 1979, 44, 235-254.	1.8	193
329	Mass spectrometric identification of intermediates in the biosynthesis of cyanogenic glucosides. Carlsberg Research Communications, 1979, 44, 367-379.	1.8	3
330	Indentification of coupling factor subunits in thylakoid polypeptide patterns of wild-type and mutant barley thylakoids using crossed immunoelectrophoresis. Carlsberg Research Communications, 1979, 44, 337-351.	1.8	29
331	CHANNELING OF INTERMEDIATES DURING THE BIOSYNTHESIS OF CYANOGENIC GLYCOSIDES. , 1979, , 63-71.		O
332	The biosynthesis of cyanogenic glucosides in higher plants. N-Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (Linn) Moench. Journal of Biological Chemistry, 1979, 254, 8575-83.	3.4	67
333	Chemical synthesis of labelled intermediates in cyanogenic glucoside biosynthesis. Journal of Labelled Compounds and Radiopharmaceuticals, 1978, 14, 663-671.	1.0	21
334	Intermediates in the biosynthesis of cyanogenic glucosides determined by use of a gas chromatograph coupled with a gas proportional counter. Analytical Biochemistry, 1977, 81, 292-304.	2.4	12
335	Chemical Synthesis and Disproportionation of N-Hydroxytyrosine Acta Chemica Scandinavica, 1977, 31b, 343-344.	0.7	27
336	Conversion of saccharopine to lysine in barley. Phytochemistry, 1976, 15, 695-696.	2.9	4
337	Amino acid profiles of cassava seeds (Manihot esculenta). Economic Botany, 1976, 30, 419-423.	1.7	6
338	Lysine Catabolism in Barley (Hordeum vulgare L.). Plant Physiology, 1976, 57, 687-692.	4.8	20
339	Lysine Biosynthesis in Barley (Hordeum vulgare L.). Plant Physiology, 1974, 54, 638-643.	4.8	27
340	Determination of isotope distribution in labeled lysine. Analytical Biochemistry, 1974, 60, 531-536.	2.4	3
341	Changes in the major constituents of Manihot esculenta seeds during germination and growth. Economic Botany, 1974, 28, 145-154.	1.7	8
342	Fatty acid profiles in germinating Manihot esculenta. Phytochemistry, 1973, 12, 2909-2911.	2.9	6

#	Article	IF	CITATIONS
343	Alkaloids of Picralima nitida. Phytochemistry, 1972, 11, 2620-2621.	2.9	11