
Rui Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3952579/publications.pdf Version: 2024-02-01

Ριι Υλο

#	Article	IF	CITATIONS
1	Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, 2016, 8, 035020.	7.1	652
2	The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication, 2015, 7, 045002.	7.1	240
3	Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. Biofabrication, 2015, 7, 044101.	7.1	124
4	Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation. Biofabrication, 2012, 4, 025007.	7.1	119
5	Three-dimensional printing: review of application in medicine and hepatic surgery. Cancer Biology and Medicine, 2016, 13, 443.	3.0	47
6	Biomimetic injectable HUVECâ€adipocytes/collagen/alginate microsphere coâ€cultures for adipose tissue engineering. Biotechnology and Bioengineering, 2013, 110, 1430-1443.	3.3	44
7	Design and Evaluation of a Cell Microencapsulating Device for Cell Assembly Technology. Journal of Bioactive and Compatible Polymers, 2009, 24, 48-62.	2.1	42
8	Triboelectric nanogenerators for electro-assisted cell printing. Nano Energy, 2020, 67, 104150.	16.0	36
9	Injectable cell/hydrogel microspheres induce the formation of fat lobule-like microtissues and vascularized adipose tissue regeneration. Biofabrication, 2012, 4, 045003.	7.1	35
10	Biomaterial-assisted scalable cell production for cell therapy. Biomaterials, 2020, 230, 119627.	11.4	33
11	Bioprinting of Stem Cells: Interplay of Bioprinting Process, Bioinks, and Stem Cell Properties. ACS Biomaterials Science and Engineering, 2018, 4, 3108-3124.	5.2	31
12	A biomimetic physiological model for human adipose tissue by adipocytes and endothelial cell cocultures with spatially controlled distribution. Biomedical Materials (Bristol), 2013, 8, 045005.	3.3	25
13	An integrated cell printing system for the construction of heterogeneous tissue models. Acta Biomaterialia, 2019, 95, 245-257.	8.3	24
14	Three-Dimensional Printing of Hydrogel Scaffolds with Hierarchical Structure for Scalable Stem Cell Culture. ACS Biomaterials Science and Engineering, 2020, 6, 2995-3004.	5.2	20
15	Stem Cells: Hepatic Differentiation of Human Embryonic Stem Cells as Microscaled Multilayered Colonies Leading to Enhanced Homogeneity and Maturation (Small 21/2014). Small, 2014, 10, 4310-4310.	10.0	18
16	Hepatic Differentiation of Human Embryonic Stem Cells as Microscaled Multilayered Colonies Leading to Enhanced Homogeneity and Maturation. Small, 2014, 10, 4311-4323.	10.0	15
17	Rapid and efficient in vivo angiogenesis directed by electro-assisted bioprinting of alginate/collagen microspheres with human umbilical vein endothelial cell coating layer. International Journal of Bioprinting, 2019, 5, 3.	3.4	9
18	Rapid and efficient angiogenesis directed by electro-assisted bioprinting of alginate/collagen microspheres with human umbilical vein endothelial cell coating layer. International Journal of Bioprinting, 2019, 5, 194.	3.4	5

#	Article	IF	CITATIONS
19	Bio-Manufacturing Research Center at Tsinghua University. Bio-Design and Manufacturing, 2019, 2, 137-143.	7.7	1