
Grzegorz SÅ,owik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/395235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of support composition on the performance of nickel catalysts in CO2 methanation reaction. Catalysis Today, 2020, 357, 468-482.	4.4	56
2	Nickel catalysts supported on silica microspheres for CO2 methanation. Microporous and Mesoporous Materials, 2018, 272, 79-91.	4.4	55
3	Evolution of the structure of unpromoted and potassium-promoted ceria-supported nickel catalysts in the steam reforming of ethanol. Applied Catalysis B: Environmental, 2018, 221, 490-509.	20.2	52
4	Effects of dealumination on the performance of Ni-containing BEA catalysts in bioethanol steam reforming. Applied Catalysis B: Environmental, 2018, 237, 94-109.	20.2	52
5	Co/CeO2 and Ni/CeO2 catalysts for ethanol steam reforming: Effect of the cobalt/nickel dispersion on catalysts properties. Journal of Catalysis, 2021, 393, 159-178.	6.2	43
6	Hydrogen production by steam reforming of ethanol over Co/CeO2 catalysts: Effect of cobalt content. Journal of the Energy Institute, 2019, 92, 222-238.	5.3	38
7	Steam reforming and oxidative steam reforming of ethanol over PtKCo/CeO2 catalyst. Fuel, 2016, 183, 518-530.	6.4	37
8	Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction. Applied Surface Science, 2018, 440, 1047-1062.	6.1	36
9	Surface State and Catalytic Performance of Ceria‣upported Cobalt Catalysts in the Steam Reforming of Ethanol. ChemCatChem, 2017, 9, 782-797.	3.7	34
10	CO2 Methanation in the Presence of Ce-Promoted Alumina Supported Nickel Catalysts: H2S Deactivation Studies. Topics in Catalysis, 2019, 62, 524-534.	2.8	33
11	Recycling of Waste Solution after Hydrothermal Conversion of Fly Ash on a Semi-Technical Scale for Zeolite Synthesis. Materials, 2021, 14, 1413.	2.9	30
12	Comparative study on steam and oxidative steam reforming of ethanol over 2KCo/ZrO2 catalyst. Catalysis Today, 2015, 242, 50-59.	4.4	27
13	Steam Reforming of Methanol over Nanostructured Pt/TiO2 and Pt/CeO2 Catalysts for Fuel Cell Applications. Catalysts, 2018, 8, 544.	3.5	27
14	Combustion-synthesized Li x Mn 2 O 4 -based spinel nanorods as cathode materials for lithium-ion batteries. Chemical Engineering Journal, 2017, 311, 191-202.	12.7	24
15	Optimization of the potassium promotion of the Co î±-Al2O3 catalyst for the effective hydrogen production via ethanol steam reforming. Applied Catalysis A: General, 2021, 614, 118051.	4.3	24
16	Advantages of stainless steel sieves as support for catalytic N2O decomposition over K-doped Co3O4. Catalysis Today, 2015, 257, 2-10.	4.4	22
17	P-Arylation of secondary phosphine oxides catalyzed by nickel-supported nanoparticles. Organic Chemistry Frontiers, 2018, 5, 2079-2085.	4.5	22
18	Photocatalytic Reduction of CO ₂ Over CdS, ZnS and Core/Shell CdS/ZnS Nanoparticles Deposited on Montmorillonite. Journal of Nanoscience and Nanotechnology, 2017, 17, 4041-4047.	0.9	21

Grzegorz SÅ,owik

#	Article	IF	CITATIONS
19	Flow hydrogenation of p-nitrophenol with nano-Ag/Al ₂ O ₃ . RSC Advances, 2016, 6, 87564-87568.	3.6	19
20	Estimation of Average Crystallites Size of Active Phase in Ceria-Supported Cobalt-Based Catalysts by Hydrogen Chemisorption vs TEM and XRD Methods. Catalysis Letters, 2016, 146, 2173-2184.	2.6	19
21	The state of BEA zeolite supported nickel catalysts in CO2 methanation reaction. Applied Surface Science, 2021, 564, 150421.	6.1	18
22	Microscopic characterization of changes in the structure of KCo/CeO2 catalyst used in the steam reforming of ethanol. Materials Chemistry and Physics, 2016, 173, 219-237.	4.0	17
23	Structural and surface changes of copper modified manganese oxides. Applied Surface Science, 2016, 370, 536-544.	6.1	17
24	Influence of composition and morphology of the active phase on the catalytic properties of cobalt-nickel catalysts in the steam reforming of ethanol. Materials Chemistry and Physics, 2021, 258, 123970.	4.0	17
25	Ni–Re alloy catalysts on Al2O3 for methane dry reforming. International Journal of Hydrogen Energy, 2022, 47, 16528-16543.	7.1	15
26	The effect of copper on benzene hydrogenation to cyclohexane over Ni/Al2O3 catalyst. Applied Catalysis A: General, 2016, 523, 54-60.	4.3	13
27	Catalytic activity of cobalt grafted on ordered mesoporous silica materials in N2O decomposition and CO oxidation. Molecular Catalysis, 2017, 437, 57-72.	2.0	13
28	Effect of metal precursor and pretreatment conditions onÂthe catalytic activity of Ni/C inÂthe aqueous phase hydrodechlorination of 1,1,2-trichloroethene. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 3-16.	1.7	12
29	Redox Behavior of a Copperâ€Based Methanol Reformer for Fuel Cell Applications. Energy Technology, 2018, 6, 1332-1341.	3.8	12
30	Tuning the properties of the cobalt-zeolite nanocomposite catalyst by potassium: Switching between dehydration and dehydrogenation of ethanol. Journal of Catalysis, 2022, 407, 364-380.	6.2	12
31	The mechanism of the CH4/O2 reaction on the Pd–Pt/γ-Al2O3 catalyst: A SSITKA study. Applied Catalysis B: Environmental, 2014, 160-161, 298-306.	20.2	11
32	Chromium-modified zinc oxides. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1205-1215.	3.6	10
33	Tuning nano-nickel selectivity with tin in flow hydrogenation of 6-methyl-5-hepten-2-one by surface organometallic chemistry modification. Catalysis Today, 2018, 308, 38-44.	4.4	10
34	Investigation of the Inhibiting Role of Hydrogen in the Steam Reforming of Methanol. ChemCatChem, 2019, 11, 3264-3278.	3.7	10
35	Flashâ€Calcined CuZnAlâ€LDH as Highâ€Activity LTâ€WGS Catalyst. European Journal of Inorganic Chemistry, 2019, 2019, 1792-1798.	2.0	9
36	Direct Conversion of Carbon Dioxide to Methane over Ceria―and Aluminaâ€Supported Nickel Catalysts for Biogas Valorization. ChemPlusChem, 2021, 86, 889-903.	2.8	9

Grzegorz SÅ,owik

#	Article	IF	CITATIONS
37	Bioethanol Steam Reforming over Cobalt-Containing USY and ZSM-5 Commercial Zeolite Catalysts. Frontiers in Materials, 2020, 7, .	2.4	8
38	The effect of La2O3 and CeO2 modifiers on properties of Ni–Al catalysts for LNG prereforming. International Journal of Hydrogen Energy, 2021, 46, 11664-11676.	7.1	6
39	Effect of Potassium Promoter on the Performance of Nickel-Based Catalysts Supported on MnOx in Steam Reforming of Ethanol. Catalysts, 2022, 12, 600.	3.5	6
40	Precipitation of Zinc Oxide Nanoparticles Under UV-Irradiation. Journal of Nanoscience and Nanotechnology, 2017, 17, 4805-4811.	0.9	5
41	Enhanced Performance of LiAl0.1Mn1.9O4 Cathode for Li-Ion Battery via TiN Coating. Energies, 2021, 14, 825.	3.1	5
42	Tetrachloromethane as an Effective Agent to Transform Nanoparticles of Palladium and Gold in Supported Catalysts. ChemCatChem, 2016, 8, 2625-2629.	3.7	4
43	The effects of cetyltrimethylammonium bromide surfactant on alumina modified zinc oxides. Materials Research Bulletin, 2016, 78, 36-45.	5.2	3
44	Heterostructural Mixed Oxides Prepared via ZnAlLa LDH or ex-ZnAl LDH Precursors—Effect of La Content and Its Incorporation Route. Materials, 2021, 14, 2082.	2.9	3
45	Application of microemulsion method for development of methanol steam reforming Pd/ZnO catalysts. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1265-1272.	3.6	2
46	Synthesis and characterization of a novel composites derived from SBA-15 mesoporous silica and iron pentacarbonyl. Journal of Colloid and Interface Science, 2022, 608, 2421-2429.	9.4	2
47	Interactions between Nanoclay, CTAB and Linear/Star Shaped Polymers. International Journal of Molecular Sciences, 2022, 23, 3051.	4.1	2
48	The Influence of Active Phase Composition and Reaction Temperature on the Catalytic Properties of K-Promoted Co–Ni/CeO2 Catalysts in the Steam Reforming of Ethanol. Catalysis Letters, 2023, 153, 1505-1526.	2.6	2
49	The Effects of Ce and W Promoters on the Performance of Alumina-Supported Nickel Catalysts in CO2 Methanation Reaction. Catalysts, 2022, 12, 13.	3.5	1
50	Nanocrystallic thin films statistical structural analysis by the automatic image processing. Proceedings of SPIE, 2013, , .	0.8	0
51	Ecofriendly K-decorated ZnO/Zn(Al,La)2O4 catalyst for hydrogen production – Effect of heterostructure on catalyst activity at steamâ€lean process gas. Fuel, 2021, 302, 121067.	6.4	ο