Francisco J Villarreal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3952344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	(–)â€Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle. Journal of Physiology, 2011, 589, 4615-4631.	1.3	162
2	(â^')-Epicatechin Activation of Endothelial Cell Endothelial Nitric Oxide Synthase, Nitric Oxide, and Related Signaling Pathways. Hypertension, 2010, 55, 1398-1405.	1.3	145
3	Early Short-Term Treatment With Doxycycline Modulates Postinfarction Left Ventricular Remodeling. Circulation, 2003, 108, 1487-1492.	1.6	130
4	Time-dependent increases in type-III collagen gene expression in medial collateral ligament fibroblasts under cyclic strains. Journal of Orthopaedic Research, 2000, 18, 220-227.	1.2	109
5	Alterations in Skeletal Muscle Indicators of Mitochondrial Structure and Biogenesis in Patients with Type 2 Diabetes and Heart Failure: Effects of Epicatechin Rich Cocoa. Clinical and Translational Science, 2012, 5, 43-47.	1.5	107
6	Myocardial matrix metalloproteinase-2: inside out and upside down. Journal of Molecular and Cellular Cardiology, 2014, 77, 64-72.	0.9	89
7	(â^')-Epicatechin rich cocoa mediated modulation of oxidative stress regulators in skeletal muscle of heart failure and type 2 diabetes patients. International Journal of Cardiology, 2013, 168, 3982-3990.	0.8	83
8	Effects of (â^')-epicatechin on molecular modulators of skeletal muscle growth and differentiation. Journal of Nutritional Biochemistry, 2014, 25, 91-94.	1.9	76
9	Recovery of Indicators of Mitochondrial Biogenesis, Oxidative Stress, and Aging With (â^')-Epicatechin in Senile Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1370-1378.	1.7	76
10	Effects of (â^')-epicatechin on a diet-induced rat model of cardiometabolic risk factors. European Journal of Pharmacology, 2014, 728, 24-30.	1.7	70
11	Effects of (â^')-Epicatechin on Myocardial Infarct Size and Left Ventricular Remodeling After Permanent Coronary Occlusion. Journal of the American College of Cardiology, 2010, 55, 2869-2876.	1.2	59
12	Beneficial effects of dark chocolate on exercise capacity in sedentary subjects: underlying mechanisms. A double blind, randomized, placebo controlled trial. Food and Function, 2016, 7, 3686-3693.	2.1	56
13	The effects of (â^')-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER). Pharmacological Research, 2015, 100, 309-320.	3.1	54
14	Regulation of cardiac fibroblast collagen synthesis by adenosine: roles for Epac and PI3K. American Journal of Physiology - Cell Physiology, 2009, 296, C1178-C1184.	2.1	51
15	(-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: Potential role of endothelial nitric oxide synthase. Diabetes and Vascular Disease Research, 2016, 13, 201-210.	0.9	50
16	A randomized, placebo-controlled, double-blind study on the effects of (â^')-epicatechin on the triglyceride/HDLc ratio and cardiometabolic profile of subjects with hypertriglyceridemia: Unique in vitro effects. International Journal of Cardiology, 2016, 223, 500-506.	0.8	45
17	Discovery of BMS-986235/LAR-1219: A Potent Formyl Peptide Receptor 2 (FPR2) Selective Agonist for the Prevention of Heart Failure. Journal of Medicinal Chemistry, 2020, 63, 9003-9019.	2.9	45
18	(â^')-Epicatechin induces calcium and translocation independent eNOS activation in arterial endothelial cells. American Journal of Physiology - Cell Physiology, 2011, 300, C880-C887.	2.1	44

#	Article	IF	CITATIONS
19	Perturbations in skeletal muscle sarcomere structure in patients with heart failure and TypeÂ2 diabetes: restorative effects of (â^)-epicatechinrich cocoa. Clinical Science, 2013, 125, 383-389.	1.8	44
20	(-)-Epicatechin stimulates mitochondrial biogenesis and cell growth in C2C12 myotubes via the G-protein coupled estrogen receptor. European Journal of Pharmacology, 2018, 822, 95-107.	1.7	42
21	(–)â€Epicatechin improves mitochondrialâ€related protein levels and ameliorates oxidative stress in dystrophic δâ€sarcoglycan null mouse striated muscle. FEBS Journal, 2014, 281, 5567-5580.	2.2	41
22	High Flavonoid Cocoa Supplement Ameliorates Plasma Oxidative Stress and Inflammation Levels While Improving Mobility and Quality of Life in Older Subjects: A Double-Blind Randomized Clinical Trial. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1620-1627.	1.7	41
23	Improved Osteoblast and Chondrocyte Adhesion and Viability by Surface-Modified Ti6Al4V Alloy with Anodized TiO2 Nanotubes Using a Super-Oxidative Solution. Materials, 2015, 8, 867-883.	1.3	40
24	Improved in vitro angiogenic behavior on anodized titanium dioxide nanotubes. Journal of Nanobiotechnology, 2017, 15, 10.	4.2	39
25	Cell membrane mediated (â^')-epicatechin effects on upstream endothelial cell signaling: Evidence for a surface receptor. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2749-2752.	1.0	37
26	Browning effects of (-)-epicatechin on adipocytes and white adipose tissue. European Journal of Pharmacology, 2017, 811, 48-59.	1.7	36
27	Mitochondrial H+-ATP synthase in human skeletal muscle: contribution to dyslipidaemia and insulin resistance. Diabetologia, 2017, 60, 2052-2065.	2.9	32
28	Preservation of Post-Infarction Cardiac Structure and Function via Long-Term Oral Formyl Peptide Receptor AgonistÂTreatment. JACC Basic To Translational Science, 2019, 4, 905-920.	1.9	32
29	Pharmacokinetic, partial pharmacodynamic and initial safety analysis of (â^')-epicatechin in healthy volunteers. Food and Function, 2015, 6, 824-833.	2.1	31
30	(â^')-Epicatechin induced reversal of endothelial cell aging and improved vascular function: underlying mechanisms. Food and Function, 2018, 9, 4802-4813.	2.1	31
31	Sex related differences in the pathogenesis of organ fibrosis. Translational Research, 2020, 222, 41-55.	2.2	31
32	Early degradation and serum appearance of type I collagen fragments after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2004, 36, 597-601.	0.9	30
33	(â^')â€Epicatechin induces mitochondrial biogenesis and markers of muscle regeneration in adults with Becker muscular dystrophy. Muscle and Nerve, 2021, 63, 239-249.	1.0	30
34	Modulation of cardiac remodeling by adenosine: In vitro and in vivo effects. Molecular and Cellular Biochemistry, 2003, 251, 17-26.	1.4	29
35	Early hyperbaric oxygen therapy improves survival in a model of severe sepsis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R160-R168.	0.9	29
36	Stimulatory Effects of the Flavanol (-)-Epicatechin on Cardiac Angiogenesis. Journal of Cardiovascular Pharmacology, 2012, 60, 429-438.	0.8	26

#	Article	IF	CITATIONS
37	Selective FPR2 Agonism Promotes a Proresolution Macrophage Phenotype and Improves Cardiac Structure-Function Post Myocardial Infarction. JACC Basic To Translational Science, 2021, 6, 676-689.	1.9	26
38	The cardioprotective effects of (-)-Epicatechin are mediated through arginase activity inhibition in a murine model of ischemia/reperfusion. European Journal of Pharmacology, 2018, 818, 335-342.	1.7	21
39	Co-administration of the flavanol (-)-epicatechin with doxycycline synergistically reduces infarct size in a model of ischemia reperfusion injury by inhibition of mitochondrial swelling. European Journal of Pharmacology, 2014, 744, 76-82.	1.7	20
40	Arginase inhibition by (â^)-Epicatechin reverses endothelial cell aging. European Journal of Pharmacology, 2020, 885, 173442.	1.7	17
41	Effects of (â^')-epicatechin on neuroinflammation and hyperphosphorylation of tau in the hippocampus of aged mice. Food and Function, 2020, 11, 10351-10361.	2.1	16
42	Nicotine-modified postinfarction left ventricular remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H1103-H1106.	1.5	15
43	A pilot study on clinical pharmacokinetics and preclinical pharmacodynamics of (+)-epicatechin on cardiometabolic endpoints. Food and Function, 2018, 9, 307-319.	2.1	15
44	Unmasking of oestrogenâ€dependent changes in left ventricular structure and function in aged female rats: a potential model for preâ€heart failure with preserved ejection fraction. Journal of Physiology, 2019, 597, 1805-1817.	1.3	15
45	Flavonoids from dark chocolate and (â^')-epicatechin ameliorate high-fat diet-induced decreases in mobility and muscle damage in aging mice. Food Bioscience, 2020, 37, 100710.	2.0	15
46	Effects of (â^')-epicatechin on the time course of the expression of perilipins in a diet-induced model of nonalcoholic steatohepatitis. Journal of Nutritional Biochemistry, 2020, 77, 108296.	1.9	12
47	The role of inflammation in driving left ventricular remodeling in a pre-HFpEF model. Experimental Biology and Medicine, 2020, 245, 748-757.	1.1	12
48	Modulation of cardiac remodeling by adenosine: in vitro and in vivo effects. Molecular and Cellular Biochemistry, 2003, 251, 17-26.	1.4	12
49	Thyroid hormone-induced stimulation of the sarcoplasmic reticulum Ca2+ ATPase gene is inhibited by LIF and IL-6. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E738-E743.	1.8	11
50	Effects of a Natural Extract of <i>Aronia melanocarpa</i> Berry on Endothelial Cell Nitric Oxide Production. Journal of Food Biochemistry, 2016, 40, 404-410.	1.2	11
51	Synthesis of novel (â^')-epicatechin derivatives as potential endothelial GPER agonists: Evaluation of biological effects. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 658-663.	1.0	11
52	PXR is a target of (-)-epicatechin in skeletal muscle. Heliyon, 2020, 6, e05357.	1.4	11
53	Structural and energetic basis for novel epicatechin derivatives acting as GPER agonists through the MMGBSA method. Journal of Steroid Biochemistry and Molecular Biology, 2019, 189, 176-186.	1.2	10
54	11-β-hydroxysterols as possible endogenous stimulators of mitochondrial biogenesis as inferred from epicatechin molecular mimicry. Pharmacological Research, 2020, 151, 104540.	3.1	8

FRANCISCO J VILLARREAL

#	Article	IF	CITATIONS
55	Beneficial Effects of Flavonoids on Skeletal Muscle Health: A Systematic Review and Meta-Analysis. Journal of Medicinal Food, 2022, 25, 465-486.	0.8	7
56	Development of muscle atrophy and loss of function in a Gulf-War illness model: underlying mechanisms. Scientific Reports, 2020, 10, 14526.	1.6	6
57	(â^')-Epicatechin reduces muscle waste after complete spinal cord transection in a murine model: role of ubiquitin–proteasome system. Molecular Biology Reports, 2020, 47, 8975-8985.	1.0	6
58	Stimulatory effects of (â^')-epicatechin and its enantiomer (+)-epicatechin on mouse frontal cortex neurogenesis markers and short-term memory: proof of concept. Food and Function, 2021, 12, 3504-3515.	2.1	6
59	Anticancer potential of (â^')-epicatechin in a triple-negative mammary gland model. Journal of Pharmacy and Pharmacology, 2021, 73, 1675-1682.	1.2	6
60	Restorative potential of (â^')-epicatechin in a rat model of Gulf War illness muscle atrophy and fatigue. Scientific Reports, 2021, 11, 21861.	1.6	6
61	Effects of Cacao By-Products and a Modest Weight Loss Intervention on the Concentration of Serum Triglycerides in Overweight Subjects: Proof of Concept. Journal of Medicinal Food, 2020, 23, 745-749.	0.8	5
62	Is it possible to treat nonalcoholic liver disease using a flavanol-based nutraceutical approach? Basic and clinical data. Journal of Basic and Clinical Physiology and Pharmacology, 2022, 33, 703-714.	0.7	5
63	Effects of (â^')-epicatechin on frontal cortex DAPC and dysbindin of the mdx mice. Neuroscience Letters, 2017, 658, 142-149.	1.0	3
64	Obesity and Cardiovascular Risk Improvement Using Cacao By-Products in a Diet-Induced Obesity Murine Model. Journal of Medicinal Food, 2019, 22, 567-577.	0.8	3
65	Antifibrotic Effects of (â^')-Epicatechin on High Glucose Stimulated Cardiac Fibroblasts. Journal of Medicinal Food, 2021, 24, 1177-1185.	0.8	2
66	Effects of epicatechin rich cocoa on REDUX status in human skeletal muscle. FASEB Journal, 2012, 26, 888.11.	0.2	2
67	In Pursuit of Understanding the Role of Estrogens in Regulating Cardiac Structure and Function. JACC Basic To Translational Science, 2020, 5, 913-915.	1.9	1
68	Pleiotropic properties of minocycline preserve cardiac function during ischemia/reperfusion injury. FASEB Journal, 2008, 22, 730.25.	0.2	0
69	Excess Protein Oâ€GlcNAcylation and the Progression of Diabetic Cardiomyopathy. FASEB Journal, 2012, 26, 759.1.	0.2	0
70	Detrimental Effects of Aging, Ovariectomy and Weight Gain on Left Ventricular Structure and Function: A Potential Preclinical Model of Early Stage HFpEF. FASEB Journal, 2018, 32, 848.13.	0.2	0
71	Antifibrotic Effect of (â^')â€Epicatechin in a Rodent Model of Early Stage HFpEF. FASEB Journal, 2019, 33, lb506.	0.2	0