Dinesh Mohan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3952247/dinesh-mohan-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67 192 29,343 171 h-index g-index citations papers 32,868 195 7.1 7.59 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
192	Can Biodegradabilitylof adsorbents constitute an Achilles Theellin real-world water purification? Perspectives and opportunities. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107321	6.8	
191	Arsenic removal from household drinking water by biochar and biochar composites: A focus on scale-up 2022 , 277-320		
190	Sorptive removal of pharmaceuticals using sustainable biochars 2022 , 395-427		1
189	Biochar and biochar composites for poly- and perfluoroalkyl substances (PFAS) sorption 2022 , 555-595		O
188	Biochar adsorption system designs 2022 , 153-203		1
187	Biochar and biochar composites for oil sorption 2022 , 527-554		1
186	Nanobiochar for aqueous contaminant removal 2022 , 667-704		O
185	Sources, spatio-temporal distribution and depth variations in groundwater salinity of semi-arid Rohtak district, Haryana, India. <i>Groundwater for Sustainable Development</i> , 2022 , 100790	6	О
184	Agricultural Residue-Derived Sustainable Nanoadsorbents for Wastewater Treatment 2022 , 235-259		
183	Shape Memory Adsorbents for Water Remediation: Recent Progress, Associated Hydrodynamics, and Research Needs. <i>Water, Air, and Soil Pollution</i> , 2021 , 232, 1	2.6	1
182	Water decontamination using bio-based, chemically functionalized, doped, and ionic liquid-enhanced adsorbents: review. <i>Environmental Chemistry Letters</i> , 2021 , 19, 3075-3114	13.3	13
181	Future of road safety and SDG 3.6 goals in six Indian cities. IATSS Research, 2021, 45, 12-18	4.2	4
180	Coronavirus (SARS-CoV-2) in the environment: Occurrence, persistence, analysis in aquatic systems and possible management. <i>Science of the Total Environment</i> , 2021 , 765, 142698	10.2	33
179	Household arsenic contaminated water treatment employing iron oxide/bamboo biochar composite: An approach to technology transfer. <i>Journal of Colloid and Interface Science</i> , 2021 , 587, 767-	1 713	13
178	Nanobiochar: A sustainable solution for agricultural and environmental applications 2021 , 501-519		1
177	Engineered biochar 🖪 sustainable solution for the removal of antibiotics from water. <i>Chemical Engineering Journal</i> , 2021 , 405, 126926	14.7	75
176	Adsorbents for real-scale water remediation: Gaps and the road forward. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105380	6.8	12

(2020-2021)

175	different agricultural management systems in Sri Lanka. <i>Groundwater for Sustainable Development</i> , 2021 , 14, 100619	6	3
174	Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts. <i>Science of the Total Environment</i> , 2021 , 780, 146274	10.2	17
173	High capacity aqueous phosphate reclamation using Fe/Mg-layered double hydroxide (LDH) dispersed on biochar. <i>Journal of Colloid and Interface Science</i> , 2021 , 597, 182-195	9.3	16
172	Ciprofloxacin and acetaminophen sorption onto banana peel biochars: Environmental and process parameter influences. <i>Environmental Research</i> , 2021 , 201, 111218	7.9	23
171	Investigating the association between population density and travel patterns in Indian cities-An analysis of 2011 census data. <i>Cities</i> , 2020 , 100, 102656	5.6	9
170	Batch and Continuous Fixed-Bed Lead Removal Using Himalayan Pine Needle Biochar: Isotherm and Kinetic Studies. <i>ACS Omega</i> , 2020 , 5, 16366-16378	3.9	17
169	Sustainable Low-Concentration Arsenite [As(III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide-Biochar Nanocomposite Adsorbents-A Mechanistic Study. <i>ACS Omega</i> , 2020 , 5, 2575-2593	3.9	27
168	Safety of motorized two-wheeler riders in the formal and informal transport sector. <i>International Journal of Injury Control and Safety Promotion</i> , 2020 , 27, 51-60	1.8	4
167	How much would low- and middle-income countries benefit from addressing the key risk factors of road traffic injuries?. <i>International Journal of Injury Control and Safety Promotion</i> , 2020 , 27, 83-90	1.8	12
166	Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil. <i>Chemosphere</i> , 2020 , 242, 125255	8.4	27
165	Preventing motor vehicle crash injuries and deaths: science vs. folklore lessons from history. <i>International Journal of Injury Control and Safety Promotion</i> , 2020 , 27, 3-11	1.8	2
164	Dealing with existing theory: national fatality rates, vehicle standards and personal safety. <i>International Journal of Injury Control and Safety Promotion</i> , 2020 , 27, 12-19	1.8	1
163	Heterogeneous persulfate activation by nano-sized Mn3O4 to degrade furfural from wastewater. Journal of Molecular Liquids, 2020 , 298, 112088	6	26
162	What can we learn from the historic road safety performance of high-income countries?. <i>International Journal of Injury Control and Safety Promotion</i> , 2020 , 27, 27-34	1.8	1
161	Biochar Adsorbents with Enhanced Hydrophobicity for Oil Spill Removal. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 9248-9260	9.5	40
160	Recent Developments in Aqueous Arsenic(III) Remediation Using Biomass-Based Adsorbents. <i>ACS Symposium Series</i> , 2020 , 197-251	0.4	2
159	The mechanisms of biochar interactions with microorganisms in soil. <i>Environmental Geochemistry and Health</i> , 2020 , 42, 2495-2518	4.7	52
158	Waste sludge derived adsorbents for arsenate removal from water. <i>Chemosphere</i> , 2020 , 239, 124832	8.4	24

157	Removal of Arsenic(III) from water using magnetite precipitated onto Douglas fir biochar. <i>Journal of Environmental Management</i> , 2019 , 250, 109429	7.9	81
156	Aqueous carbofuran removal using slow pyrolyzed sugarcane bagasse biochar: equilibrium and fixed-bed studies <i>RSC Advances</i> , 2019 , 9, 26338-26350	3.7	22
155	Fe3O4 Nanoparticles Dispersed on Douglas Fir Biochar for Phosphate Sorption. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3467-3479	5.6	66
154	Traffic safety: Rights and obligations. Accident Analysis and Prevention, 2019, 128, 159-163	6.1	8
153	Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. <i>Chemical Reviews</i> , 2019 , 119, 3510-3673	68.1	679
152	Fast aniline and nitrobenzene remediation from water on magnetized and nonmagnetized Douglas fir biochar <i>Chemosphere</i> , 2019 , 225, 943-953	8.4	31
151	Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research?. <i>Environment International</i> , 2019 , 127, 52-69	12.9	58
150	Water as key to the sustainable development goals of South Sudan IA water quality assessment of Eastern Equatoria State. <i>Groundwater for Sustainable Development</i> , 2019 , 8, 255-270	6	7
149	Simplified Batch and Fixed-Bed Design System for Efficient and Sustainable Fluoride Removal from Water Using Slow Pyrolyzed Okra Stem and Black Gram Straw Biochars. <i>ACS Omega</i> , 2019 , 4, 19513-195	52 ³ 5 ⁹	19
148	Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. <i>Science of the Total Environment</i> , 2019 , 694, 133427	10.2	68
147	The care and transport of trauma victims by layperson emergency medical systems: a qualitative study in Delhi, India. <i>BMJ Global Health</i> , 2019 , 4, e001963	6.6	22
146	Carbamazepine removal from water by carbon dot-modified magnetic carbon nanotubes. <i>Environmental Research</i> , 2019 , 169, 434-444	7.9	73
145	Environmental pollution of soil with PAHs in energy producing plants zone. <i>Science of the Total Environment</i> , 2019 , 655, 232-241	10.2	29
144	Identification of Fe and Zr oxide phases in an iron-zirconium binary oxide and arsenate complexes adsorbed onto their surfaces. <i>Journal of Hazardous Materials</i> , 2018 , 353, 340-347	12.8	18
143	Biochar production and applications in soil fertility and carbon sequestration a sustainable solution to crop-residue burning in India. <i>RSC Advances</i> , 2018 , 8, 508-520	3.7	88
142	Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir. <i>Chemical Engineering Journal</i> , 2018 , 331, 480-491	14.7	125
141	Lead (Pb) sorptive removal using chitosan-modified biochar: batch and fixed-bed studies <i>RSC Advances</i> , 2018 , 8, 25368-25377	3.7	44
140	Fast nitrate and fluoride adsorption and magnetic separation from water on FeO and FeO dispersed on Douglas fir biochar. <i>Bioresource Technology</i> , 2018 , 263, 258-265	11	135

(2016-2017)

139	Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods. <i>RSC Advances</i> , 2017 , 7, 8606-8624	3.7	34
138	Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. <i>Chemosphere</i> , 2017 , 174, 49-57	8.4	61
137	Official government statistics of road traffic deaths in India under-represent pedestrians and motorised two wheeler riders. <i>Injury Prevention</i> , 2017 , 23, 1-7	3.2	36
136	Analysis of Pedestrian Movement on Delhi Roads by Using Naturalistic Observation Techniques. <i>Transportation Research Record</i> , 2017 , 2634, 95-100	1.7	6
135	Lead (Pb) and copper (Cu) remediation from water using superparamagnetic maghemite (FeO) nanoparticles synthesized by Flame Spray Pyrolysis (FSP). <i>Journal of Colloid and Interface Science</i> , 2017 , 492, 176-190	9.3	98
134	Synthesis of l-cysteine stabilized zero-valent iron (nZVI) nanoparticles for lead remediation from water. <i>Environmental Nanotechnology, Monitoring and Management</i> , 2017 , 7, 34-45	3.3	21
133	Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 4577-4590	5.1	58
132	Evaluation of Odd E ven Day Traffic Restriction Experiments in Delhi, India. <i>Transportation Research Record</i> , 2017 , 2627, 9-16	1.7	26
131	Lead and Chromium Adsorption from Water using L-Cysteine Functionalized Magnetite (FeO) Nanoparticles. <i>Scientific Reports</i> , 2017 , 7, 7672	4.9	109
130	The stability and removal of water-dispersed CdSe/CdS core-shell quantum dots from water. <i>Chemosphere</i> , 2017 , 185, 926-933	8.4	8
129	Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review. <i>Bioresource Technology</i> , 2017 , 246, 150-159	11	291
128	Mental illness and injuries: emerging health challenges of urbanisation in South Asia. <i>BMJ, The</i> , 2017 , 357, j1126	5.9	11
127	Urban street structure and traffic safety. Journal of Safety Research, 2017, 62, 63-71	4	14
126	Modelling vehicular interactions for heterogeneous traffic flow using cellular automata with position preference. <i>Journal of Modern Transportation</i> , 2017 , 25, 163-177	3.7	12
125	Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 22755-22763	5.1	25
124	Nanoscale zero-valent iron for aqueous lead removal. <i>Advanced Materials Proceedings</i> , 2017 , 2, 235-241	1	11
123	Assessment of motor vehicle use characteristics in three Indian cities. <i>Transportation Research, Part D: Transport and Environment</i> , 2016 , 44, 254-265	6.4	31
122	Sustainable development of coconut shell activated carbon (CSAC) & a magnetic coconut shell activated carbon (MCSAC) for phenol (2-nitrophenol) removal. <i>RSC Advances</i> , 2016 , 6, 85390-85410	3.7	29

121	A property-performance correlation and mass transfer study of As(V) adsorption on three mesoporous aluminas. <i>RSC Advances</i> , 2016 , 6, 80630-80639	3.7	6
120	Performance and mass transfer of aqueous fluoride removal by a magnetic alumina aerogel. <i>RSC Advances</i> , 2016 , 6, 112988-112999	3.7	23
119	A review of fluoride in african groundwater and local remediation methods. <i>Groundwater for Sustainable Development</i> , 2016 , 2-3, 190-212	6	83
118	Lead (Pb2+) adsorption by monodispersed magnetite nanoparticles: Surface analysis and effects of solution chemistry. <i>Journal of Environmental Chemical Engineering</i> , 2016 , 4, 4237-4247	6.8	62
117	Interface interactions between insecticide carbofuran and tea waste biochars produced at different pyrolysis temperatures. <i>Chemical Speciation and Bioavailability</i> , 2016 , 28, 110-118		29
116	662 Motorcycle helmet and car seat belt use patterns in Delhi, India: implications for traffic safety interventions. <i>Injury Prevention</i> , 2016 , 22, A237.3-A238	3.2	2
115	Sustainable Biochar - A Tool for Climate Change Mitigation, Soil Management and Water and Wastewater Treatment 2016 , 949-952		
114	Removal of antimonate and antimonite from water by schwertmannite granules. <i>Desalination and Water Treatment</i> , 2016 , 57, 25639-25652		8
113	Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. <i>Journal of Colloid and Interface Science</i> , 2016 , 468, 334-346	9.3	422
112	Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks. <i>Chemosphere</i> , 2016 , 150, 781-789	8.4	127
111	Effects of Surface Iron Hydroxyl Group Site Densities on Arsenate Adsorption by Iron Oxide Nanocomposites. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 1020-1027	0.8	10
110	Understanding the Road Safety Performance of OECD Countries 2016 , 1-15		2
109	Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods. <i>SAR and QSAR in Environmental Research</i> , 2016 , 27, 539-58	3.5	10
108	858 Automobile manufacturers, advertising and traffic safety: case study from India. <i>Injury Prevention</i> , 2016 , 22, A306.1-A306	3.2	
107	Urban traffic safety assessment: A case study of six Indian cities. IATSS Research, 2016, 39, 95-101	4.2	47
106	Inter-moieties reactivity correlations: an approach to estimate the reactivity endpoints of major atmospheric reactants towards organic chemicals. <i>RSC Advances</i> , 2016 , 6, 50297-50305	3.7	7
105	Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 14034-46	5.1	18
104	Land use, transport, and population health: estimating the health benefits of compact cities. Lancet, The, 2016 , 388, 2925-2935	40	264

(2014-2015)

103	Why do three-wheelers carrying schoolchildren suffer very low fatal crashes?. <i>IATSS Research</i> , 2015 , 38, 130-134	4.2	2
102	Antimonate removal from water using hierarchical macro-/mesoporous amorphous alumina. <i>Chemical Engineering Journal</i> , 2015 , 264, 617-624	14.7	26
101	Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. <i>Chemical Engineering Journal</i> , 2015 , 265, 219-227	14.7	214
100	Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. <i>Journal of Colloid and Interface Science</i> , 2015 , 442, 120-32	9.3	247
99	Particulate and gaseous emissions in two coastal cities@hennai and Vishakhapatnam, India. <i>Air Quality, Atmosphere and Health</i> , 2015 , 8, 559-572	5.6	21
98	Preparation of Activated and Non-Activated Carbon from Conocarpus Pruning Waste as Low-Cost Adsorbent for Removal of Heavy Metal Ions from Aqueous Solution. <i>BioResources</i> , 2015 , 11,	1.3	3
97	Benchmarking vehicle and passenger travel characteristics in Delhi for on-road emissions analysis. <i>Travel Behaviour & Society</i> , 2015 , 2, 88-101	5.3	48
96	Safety of young children on motorized two-wheelers around the world: A review of the global epidemiological evidence. <i>IATSS Research</i> , 2015 , 38, 83-91	4.2	9
95	Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars. Journal of Colloid and Interface Science, 2015, 448, 238-50	9.3	111
94	Synthesis of graphene oxide/schwertmannite nanocomposites and their application in Sb(V) adsorption from water. <i>Chemical Engineering Journal</i> , 2015 , 270, 205-214	14.7	70
93	A Review of Cellular Automata Model for Heterogeneous Traffic Conditions 2015 , 471-478		7
92	Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbenta critical review. <i>Bioresource Technology</i> , 2014 , 160, 191-202	11	1406
91	Re-fueling road transport for better air quality in India. Energy Policy, 2014, 68, 556-561	7.2	54
90	Fluoride removal from ground water using magnetic and nonmagnetic corn stover biochars. <i>Ecological Engineering</i> , 2014 , 73, 798-808	3.9	88
89	Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology. <i>Chemical Research in Toxicology</i> , 2014 , 27, 741-53	4	48
88	QSTR modeling for qualitative and quantitative toxicity predictions of diverse chemical pesticides in honey bee for regulatory purposes. <i>Chemical Research in Toxicology</i> , 2014 , 27, 1504-15	4	26
87	Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron. <i>Chemical Engineering Journal</i> , 2014 , 247, 250-257	14.7	93
86	Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. <i>Bioresource Technology</i> , 2014 , 166, 303-8	11	225

85	Major ion chemistry of the ground water at the Khoda Village, Ghaziabad, India. <i>Sustainability of Water Quality and Ecology</i> , 2014 , 3-4, 133-150		20
84	Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. <i>Chemical Engineering Journal</i> , 2014 , 236, 513-528	14.7	348
83	Evaluating influences of seasonal variations and anthropogenic activities on alluvial groundwater hydrochemistry using ensemble learning approaches. <i>Journal of Hydrology</i> , 2014 , 511, 254-266	6	66
82	Biochar as a sorbent for contaminant management in soil and water: a review. <i>Chemosphere</i> , 2014 , 99, 19-33	8.4	2439
81	Arsenate adsorption on three types of granular schwertmannite. Water Research, 2013, 47, 2938-48	12.5	103
80	Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 8364-73	5.1	79
79	Characterization of Bio-oils Produced from Fast Pyrolysis of Corn Stalks in an Auger Reactor. <i>Energy & Emp; Fuels</i> , 2012 , 26, 3816-3825	4.1	80
78	Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. <i>Bioresource Technology</i> , 2012 , 118, 536-44	11	75²
77	Remediating fluoride from water using hydrous zirconium oxide. <i>Chemical Engineering Journal</i> , 2012 , 198-199, 236-245	14.7	214
76	Emergence of Base Catalysts for Synthesis of Biodiesel 2012 , 251-289		
75	Fluoride Removal from Water using Bio-Char, a Green Waste, Low-Cost Adsorbent: Equilibrium Uptake and Sorption Dynamics Modeling. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 90	0 ³ 9914	172
74	Groundwater quality assessment in the village of Lutfullapur Nawada, Loni, District Ghaziabad, Uttar Pradesh, India. <i>Environmental Monitoring and Assessment</i> , 2012 , 184, 4473-88	3.1	55
73	Synthesis and Kinetic Study of Thermal Cycloimidization of Novel Poly(Amide Amic Acid) to Poly(Amide Imide) by Thermogravimetric Analysis. <i>Journal of Macromolecular Science - Physics</i> , 2011 , 50, 1388-1401	1.4	9
72	Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. <i>Chemical Engineering Journal</i> , 2011 , 172, 1111-1125	14.7	224
71	Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. <i>Journal of Hazardous Materials</i> , 2011 , 188, 319-33	12.8	377
70	Reply to the comments on HAZMAT 142 (2007) 1-53 'Arsenic removal from water/wastewater using adsorbentsa critical review' by D. Mohan and C.U. Pittman Jr. made by Zhenze Li et al. [HAZMAT 175 (2010) 1116-1117]. <i>Journal of Hazardous Materials</i> , 2011 , 185, 1614-7	12.8	7
69	Childhood injuries in rural north India. <i>International Journal of Injury Control and Safety Promotion</i> , 2010 , 17, 45-52	1.8	15
68	Sustainable transport and the modernisation of urban transport in Delhi and Stockholm. <i>Cities</i> , 2010 , 27, 421-429	5.6	30

(2006-2009)

67	(Brassica campestris L.) irrigated with distillery and tannery effluents. <i>Journal of Hazardous Materials</i> , 2009 , 162, 1514-21	12.8	178
66	Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. <i>Lancet, The</i> , 2009 , 374, 1930-43	40	708
65	Road traffic injuries: a stocktaking. Best Practice and Research in Clinical Rheumatology, 2008, 22, 725-3	9 5.3	14
64	Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-oils. <i>Energy & Fuels</i> , 2008 , 22, 614-625	4.1	339
63	Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis. <i>Chemosphere</i> , 2008 , 71, 456-65	8.4	47
62	Effect of distillery sludge on seed germination and growth parameters of green gram (Phaseolus mungo L.). <i>Journal of Hazardous Materials</i> , 2008 , 152, 431-9	12.8	58
61	Wastewater treatment using low cost activated carbons derived from agricultural byproductsa case study. <i>Journal of Hazardous Materials</i> , 2008 , 152, 1045-53	12.8	184
60	Chemometrics assisted spectrophotometric determination of pyridine in water and wastewater. <i>Analytica Chimica Acta</i> , 2008 , 630, 10-8	6.6	8
59	Farm hand tools injuries: A case study from northern India. Safety Science, 2008, 46, 54-65	5.8	41
58	Traffic safety and city structure: lessons for the future. Salud Publica De Mexico, 2008, 50 Suppl 1, S93-	10.07	8
57	Product Analysis and Thermodynamic Simulations from the Pyrolysis of Several Biomass Feedstocks. <i>Energy & Energy & Ener</i>	4.1	58
56	Exploring groundwater hydrochemistry of alluvial aquifers using multi-way modeling. <i>Analytica Chimica Acta</i> , 2007 , 596, 171-82	6.6	14
55	Arsenic removal from water/wastewater using adsorbentsA critical review. <i>Journal of Hazardous Materials</i> , 2007 , 142, 1-53	12.8	2545
55 54		12.8 9·3	²⁵⁴⁵ 708
	Materials, 2007, 142, 1-53 Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark		
54	Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. <i>Journal of Colloid and Interface Science</i> , 2007 , 310, 57-73 Synthesis, characterization, and investigation of structure-thermal cycloimidization relationship of novel poly(amide amic acid)s to poly(amide imide)s by thermogravimetric analysis. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2007 , 45, 2937-2947 Removal of 2-Aminophenol Using Novel Adsorbents. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 1113-1122	9.3	708
54 53	Materials, 2007, 142, 1-53 Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science, 2007, 310, 57-73 Synthesis, characterization, and investigation of structure-thermal cycloimidization relationship of novel poly(amide amic acid)s to poly(amide imide)s by thermogravimetric analysis. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2937-2947 Removal of 2-Aminophenol Using Novel Adsorbents. Industrial & Chemistry	9·3 2.6 3·9	708

49	Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignina biosorbent. <i>Journal of Colloid and Interface Science</i> , 2006 , 297, 489-504	9.3	262
48	Studies on the interaction of some azo dyes (naphthol red-J and direct orange) with nontronite mineral. <i>Journal of Colloid and Interface Science</i> , 2006 , 298, 79-86	9.3	46
47	Single, binary, and multicomponent sorption of iron and manganese on lignite. <i>Journal of Colloid and Interface Science</i> , 2006 , 299, 76-87	9.3	103
46	Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. <i>Journal of Hazardous Materials</i> , 2006 , 135, 280-95	12.8	317
45	Removal and recovery of metal ions from acid mine drainage using ligniteA low cost sorbent. Journal of Hazardous Materials, 2006 , 137, 1545-53	12.8	144
44	Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. <i>Journal of Hazardous Materials</i> , 2006 , 137, 762-811	12.8	1263
43	Evaluation of groundwater quality in northern Indo-Gangetic alluvium region. <i>Environmental Monitoring and Assessment</i> , 2006 , 112, 211-30	3.1	66
42	Removal of alpha-picoline, beta-picoline, and gamma-picoline from synthetic wastewater using low cost activated carbons derived from coconut shell fibers. <i>Environmental Science & Environmental Scie</i>	10.3	27
41	Studies on distribution and fractionation of heavy metals in Gomti river sediments tributary of the Ganges, India. <i>Journal of Hydrology</i> , 2005 , 312, 14-27	6	432
40	Removal of Hexavalent Chromium from Aqueous Solution Using Low-Cost Activated Carbons Derived from Agricultural Waste Materials and Activated Carbon Fabric Cloth. <i>Industrial &</i> Engineering Chemistry Research, 2005 , 44, 1027-1042	3.9	301
39	Removal of pyridine derivatives from aqueous solution by activated carbons developed from agricultural waste materials. <i>Carbon</i> , 2005 , 43, 1680-1693	10.4	65
38	Chemometric data analysis of pollutants in wastewater case study. <i>Analytica Chimica Acta</i> , 2005 , 532, 15-25	6.6	76
37	Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. <i>Analytica Chimica Acta</i> , 2005 , 550, 82-91	6.6	124
36	Distribution of persistent organochlorine pesticide residues in Gomti River, India. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2005 , 74, 146-54	2.7	53
35	Persistent organochlorine pesticide residues in alluvial groundwater aquifers of Gangetic Plains, India. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2005 , 74, 162-9	2.7	35
34	Status of heavy metals in water and bed sediments of river Gomtia tributary of the Ganga River, India. <i>Environmental Monitoring and Assessment</i> , 2005 , 105, 43-67	3.1	86
33	Distribution of polycyclic aromatic hydrocarbons in Gomti river system, India. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2004 , 72, 1211-8	2.7	36
32	Development of safer fodder-cutter machines: a case study from north India. <i>Safety Science</i> , 2004 , 42, 43-55	5.8	13

31	Removal of pyridine from aqueous solution using low cost activated carbons derived from agricultural waste materials. <i>Carbon</i> , 2004 , 42, 2409-2421	10.4	110
30	Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. <i>Chemosphere</i> , 2004 , 55, 227-55	8.4	291
29	Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)a case study. <i>Water Research</i> , 2004 , 38, 3980-92	12.5	986
28	Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents. <i>Journal of Colloid and Interface Science</i> , 2003 , 265, 257-64	9.3	288
27	Removal of Fluoride from Aqueous Solutions by Eichhornia crassipes Biomass and Its Carbonized Form. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 6911-6918	3.9	76
26	Color Removal from Wastewater Using Low-Cost Activated Carbon Derived from Agricultural Waste Material. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 1965-1976	3.9	257
25	Development of grain threshers based on ergonomic design criteria. <i>Applied Ergonomics</i> , 2002 , 33, 503-	84.2	14
24	Road safety in less-motorized environments: future concerns. <i>International Journal of Epidemiology</i> , 2002 , 31, 527-32	7.8	119
23	Vapor-Phase Adsorption of Hexane and Benzene on Activated Carbon Fabric Cloth: Equilibria and Rate Studies. <i>Industrial & Description of Hexane and Research</i> , 2002 , 41, 2480-2486	3.9	49
22	Removal of Dyes from Wastewater Using Flyash, a Low-Cost Adsorbent[]/Industrial & Engineering Chemistry Research, 2002, 41, 3688-3695	3.9	284
21	Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagassean agricultural waste. <i>Water Research</i> , 2002 , 36, 2304-18	12.5	864
20	Studies on defluoridation of water by coal-based sorbents. <i>Journal of Chemical Technology and Biotechnology</i> , 2001 , 76, 717-722	3.5	58
19	Removal of Basic Dyes (Rhodamine B and Methylene Blue) from Aqueous Solutions Using Bagasse Fly Ash. <i>Separation Science and Technology</i> , 2000 , 35, 2097-2113	2.5	242
18	Safer Truck Front Design for Pedestrian Impacts*. <i>Traffic Injury Prevention</i> , 2000 , 2, 33-43		9
17	Removal of chromium(VI) from electroplating industry wastewater using bagasse fly ashl sugar industry waste material. <i>The Environmentalist</i> , 1998 , 19, 129-136		144
16	Studies on tractor related injuries in northern India. <i>Accident Analysis and Prevention</i> , 1998 , 30, 53-60	6.1	18
15	Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol and p-nitrophenol from wastewater. <i>Journal of Chemical Technology and Biotechnology</i> , 1998 , 71, 180-186	3.5	172
14	Interaction of 2,4-dinitrophenol and 2,4,6-trinitrophenol with copper, zinc, molybdenum and chromium ferrocyanides. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1998 , 131, 89-93	5.1	11

13	Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. <i>Waste Management</i> , 1998 , 17, 517-522	8.6	399
12	>Removal of Lead from Wastewater Using Bagasse Fly Ash Sugar Industry Waste Material. Separation Science and Technology, 1998 , 33, 1331-1343	2.5	139
11	Process Development for Removal of Substituted Phenol by Carbonaceous Adsorbent Obtained from Fertilizer Waste. <i>Journal of Environmental Engineering, ASCE</i> , 1997 , 123, 842-851	2	45
10	Process Development for the Removal of Zinc and Cadmium from Wastewater Using Slag Blast Furnace Waste Material. <i>Separation Science and Technology</i> , 1997 , 32, 2883-2912	2.5	214
9	Removal of Lead and Chromium by Activated Slag Blast-Furnace Waste. <i>Journal of Environmental Engineering, ASCE</i> , 1997 , 123, 461-468	2	164
8	Equilibrium Uptake, Sorption Dynamics, Process Optimization, and Column Operations for the Removal and Recovery of Malachite Green from Wastewater Using Activated Carbon and Activated Slag. <i>Industrial & Discourse Engineering Chemistry Research</i> , 1997 , 36, 2207-2218	3.9	202
7	Kinetic parameters for the removal of lead and chromium from wastewater using activated carbon developed from fertilizer waste material. <i>Environmental Modeling and Assessment</i> , 1996 , 1, 281-290	2	40
6	An improved motorcycle helmet design for tropical climates. <i>Applied Ergonomics</i> , 1993 , 24, 427-31	4.2	28
5	Design of safer agricultural equipment: Application of ergonomics and epidemiology. <i>International Journal of Industrial Ergonomics</i> , 1992 , 10, 301-309	2.9	43
4	An analysis of road traffic fatalities in Delhi, India. Accident Analysis and Prevention, 1985, 17, 33-45	6.1	51
3	Two-wheeler injuries in Delhi, India: A study of crash victims hospitalized in a neuro-surgery ward. <i>Accident Analysis and Prevention</i> , 1984 , 16, 407-416	6.1	29
2	Competitive Adsorption of Several Organics and Heavy Metals on Activated Carbon in Water107		
1	Granular Activated Carbon92		2