Dinesh Mohan

List of Publications by Citations

Source: https://exaly.com/author-pdf/3952247/dinesh-mohan-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67 192 29,343 171 h-index g-index citations papers 32,868 195 7.1 7.59 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
192	Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. <i>Energy & amp; Fuels</i> , 2006 , 20, 848-889	4.1	3852
191	Arsenic removal from water/wastewater using adsorbentsA critical review. <i>Journal of Hazardous Materials</i> , 2007 , 142, 1-53	12.8	2545
190	Biochar as a sorbent for contaminant management in soil and water: a review. <i>Chemosphere</i> , 2014 , 99, 19-33	8.4	2439
189	Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbenta critical review. <i>Bioresource Technology</i> , 2014 , 160, 191-202	11	1406
188	Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. <i>Journal of Hazardous Materials</i> , 2006 , 137, 762-811	12.8	1263
187	Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)a case study. <i>Water Research</i> , 2004 , 38, 3980-92	12.5	986
186	Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagassean agricultural waste. <i>Water Research</i> , 2002 , 36, 2304-18	12.5	864
185	Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. <i>Bioresource Technology</i> , 2012 , 118, 536-44	11	75 ²
184	Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. <i>Lancet, The</i> , 2009 , 374, 1930-43	40	708
183	Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. <i>Journal of Colloid and Interface Science</i> , 2007 , 310, 57-73	9.3	708
182	Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. <i>Chemical Reviews</i> , 2019 , 119, 3510-3673	68.1	679
181	Studies on distribution and fractionation of heavy metals in Gomti river sediments tributary of the Ganges, India. <i>Journal of Hydrology</i> , 2005 , 312, 14-27	6	432
180	Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. <i>Journal of Colloid and Interface Science</i> , 2016 , 468, 334-346	9.3	422
179	Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. <i>Waste Management</i> , 1998 , 17, 517-522	8.6	399
178	Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. <i>Journal of Hazardous Materials</i> , 2011 , 188, 319-33	12.8	377
177	Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. <i>Chemical Engineering Journal</i> , 2014 , 236, 513-528	14.7	348
176	Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-oils. <i>Energy & Fuels</i> , 2008 , 22, 614-625	4.1	339

(2008-2006)

301291288284
291
288
284
264
262
257
247
242
225
7 224
7 214
7 214
214
202
/

157	Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. <i>Journal of Hazardous Materials</i> , 2009 , 162, 1514-21	12.8	178
156	Fluoride Removal from Water using Bio-Char, a Green Waste, Low-Cost Adsorbent: Equilibrium Uptake and Sorption Dynamics Modeling. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 90	0 ³ 9 ⁹ 14	172
155	Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol and p-nitrophenol from wastewater. <i>Journal of Chemical Technology and Biotechnology</i> , 1998 , 71, 180-186	3.5	172
154	Removal of Lead and Chromium by Activated Slag Blast-Furnace Waste. <i>Journal of Environmental Engineering, ASCE</i> , 1997 , 123, 461-468	2	164
153	Removal of chromium(VI) from electroplating industry wastewater using bagasse fly ashl sugar industry waste material. <i>The Environmentalist</i> , 1998 , 19, 129-136		144
152	Removal and recovery of metal ions from acid mine drainage using ligniteA low cost sorbent. Journal of Hazardous Materials, 2006 , 137, 1545-53	12.8	144
151	>Removal of Lead from Wastewater Using Bagasse Fly Ash Sugar Industry Waste Material. <i>Separation Science and Technology</i> , 1998 , 33, 1331-1343	2.5	139
150	Fast nitrate and fluoride adsorption and magnetic separation from water on FeO and FeO dispersed on Douglas fir biochar. <i>Bioresource Technology</i> , 2018 , 263, 258-265	11	135
149	Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks. <i>Chemosphere</i> , 2016 , 150, 781-789	8.4	127
148	Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir. <i>Chemical Engineering Journal</i> , 2018 , 331, 480-491	14.7	125
147	Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. <i>Analytica Chimica Acta</i> , 2005 , 550, 82-91	6.6	124
146	Road safety in less-motorized environments: future concerns. <i>International Journal of Epidemiology</i> , 2002 , 31, 527-32	7.8	119
145	Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars. Journal of Colloid and Interface Science, 2015, 448, 238-50	9.3	111
144	Removal of pyridine from aqueous solution using low cost activated carbons derived from agricultural waste materials. <i>Carbon</i> , 2004 , 42, 2409-2421	10.4	110
143	Lead and Chromium Adsorption from Water using L-Cysteine Functionalized Magnetite (FeO) Nanoparticles. <i>Scientific Reports</i> , 2017 , 7, 7672	4.9	109
142	Arsenate adsorption on three types of granular schwertmannite. Water Research, 2013, 47, 2938-48	12.5	103
141	Single, binary, and multicomponent sorption of iron and manganese on lignite. <i>Journal of Colloid and Interface Science</i> , 2006 , 299, 76-87	9.3	103
140	Lead (Pb) and copper (Cu) remediation from water using superparamagnetic maghemite (EFeO) nanoparticles synthesized by Flame Spray Pyrolysis (FSP). <i>Journal of Colloid and Interface Science</i> , 2017 , 492, 176-190	9.3	98

(2005-2014)

139	Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron. <i>Chemical Engineering Journal</i> , 2014 , 247, 250-257	14.7	93
138	Biochar production and applications in soil fertility and carbon sequestration a sustainable solution to crop-residue burning in India. <i>RSC Advances</i> , 2018 , 8, 508-520	3.7	88
137	Fluoride removal from ground water using magnetic and nonmagnetic corn stover biochars. <i>Ecological Engineering</i> , 2014 , 73, 798-808	3.9	88
136	Status of heavy metals in water and bed sediments of river Gomtia tributary of the Ganga River, India. <i>Environmental Monitoring and Assessment</i> , 2005 , 105, 43-67	3.1	86
135	A review of fluoride in african groundwater and local remediation methods. <i>Groundwater for Sustainable Development</i> , 2016 , 2-3, 190-212	6	83
134	Removal of Arsenic(III) from water using magnetite precipitated onto Douglas fir biochar. <i>Journal of Environmental Management</i> , 2019 , 250, 109429	7.9	81
133	Characterization of Bio-oils Produced from Fast Pyrolysis of Corn Stalks in an Auger Reactor. <i>Energy & Energy</i> 8. 2012, 26, 3816-3825	4.1	80
132	Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 8364-73	5.1	79
131	Removal of Fluoride from Aqueous Solutions by Eichhornia crassipes Biomass and Its Carbonized Form. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 6911-6918	3.9	76
130	Chemometric data analysis of pollutants in wastewater case study. <i>Analytica Chimica Acta</i> , 2005 , 532, 15-25	6.6	76
129	Engineered biochar IA sustainable solution for the removal of antibiotics from water. <i>Chemical Engineering Journal</i> , 2021 , 405, 126926	14.7	75
128	Carbamazepine removal from water by carbon dot-modified magnetic carbon nanotubes. <i>Environmental Research</i> , 2019 , 169, 434-444	7.9	73
127	Synthesis of graphene oxide/schwertmannite nanocomposites and their application in Sb(V) adsorption from water. <i>Chemical Engineering Journal</i> , 2015 , 270, 205-214	14.7	70
126	Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. <i>Science of the Total Environment</i> , 2019 , 694, 133427	10.2	68
125	Fe3O4 Nanoparticles Dispersed on Douglas Fir Biochar for Phosphate Sorption. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3467-3479	5.6	66
124	Evaluating influences of seasonal variations and anthropogenic activities on alluvial groundwater hydrochemistry using ensemble learning approaches. <i>Journal of Hydrology</i> , 2014 , 511, 254-266	6	66
123	Evaluation of groundwater quality in northern Indo-Gangetic alluvium region. <i>Environmental Monitoring and Assessment</i> , 2006 , 112, 211-30	3.1	66
122	Removal of pyridine derivatives from aqueous solution by activated carbons developed from agricultural waste materials. <i>Carbon</i> , 2005 , 43, 1680-1693	10.4	65

121	Lead (Pb2+) adsorption by monodispersed magnetite nanoparticles: Surface analysis and effects of solution chemistry. <i>Journal of Environmental Chemical Engineering</i> , 2016 , 4, 4237-4247	6.8	62
120	Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. <i>Chemosphere</i> , 2017 , 174, 49-57	8.4	61
119	Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 4577-4590	5.1	58
118	Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research?. <i>Environment International</i> , 2019 , 127, 52-69	12.9	58
117	Product Analysis and Thermodynamic Simulations from the Pyrolysis of Several Biomass Feedstocks. <i>Energy & Documents</i> , 2007, 21, 2373-2385	4.1	58
116	Effect of distillery sludge on seed germination and growth parameters of green gram (Phaseolus mungo L.). <i>Journal of Hazardous Materials</i> , 2008 , 152, 431-9	12.8	58
115	Studies on defluoridation of water by coal-based sorbents. <i>Journal of Chemical Technology and Biotechnology</i> , 2001 , 76, 717-722	3.5	58
114	Groundwater quality assessment in the village of Lutfullapur Nawada, Loni, District Ghaziabad, Uttar Pradesh, India. <i>Environmental Monitoring and Assessment</i> , 2012 , 184, 4473-88	3.1	55
113	Re-fueling road transport for better air quality in India. Energy Policy, 2014, 68, 556-561	7.2	54
112	Distribution of persistent organochlorine pesticide residues in Gomti River, India. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2005 , 74, 146-54	2.7	53
111	The mechanisms of biochar interactions with microorganisms in soil. <i>Environmental Geochemistry and Health</i> , 2020 , 42, 2495-2518	4.7	52
110	An analysis of road traffic fatalities in Delhi, India. Accident Analysis and Prevention, 1985, 17, 33-45	6.1	51
109	Vapor-Phase Adsorption of Hexane and Benzene on Activated Carbon Fabric Cloth: Equilibria and Rate Studies. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 2480-2486	3.9	49
108	Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology. <i>Chemical Research in Toxicology</i> , 2014 , 27, 741-53	4	48
107	Benchmarking vehicle and passenger travel characteristics in Delhi for on-road emissions analysis. <i>Travel Behaviour & Society</i> , 2015 , 2, 88-101	5.3	48
106	Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis. <i>Chemosphere</i> , 2008 , 71, 456-65	8.4	47
105	Urban traffic safety assessment: A case study of six Indian cities. IATSS Research, 2016, 39, 95-101	4.2	47
104	Studies on the interaction of some azo dyes (naphthol red-J and direct orange) with nontronite mineral. <i>Journal of Colloid and Interface Science</i> , 2006 , 298, 79-86	9.3	46

103	Process Development for Removal of Substituted Phenol by Carbonaceous Adsorbent Obtained from Fertilizer Waste. <i>Journal of Environmental Engineering, ASCE</i> , 1997 , 123, 842-851	2	45	
102	Lead (Pb) sorptive removal using chitosan-modified biochar: batch and fixed-bed studies <i>RSC Advances</i> , 2018 , 8, 25368-25377	3.7	44	
101	Design of safer agricultural equipment: Application of ergonomics and epidemiology. <i>International Journal of Industrial Ergonomics</i> , 1992 , 10, 301-309	2.9	43	
100	Farm hand tools injuries: A case study from northern India. <i>Safety Science</i> , 2008 , 46, 54-65	5.8	41	
99	Kinetic parameters for the removal of lead and chromium from wastewater using activated carbon developed from fertilizer waste material. <i>Environmental Modeling and Assessment</i> , 1996 , 1, 281-290	2	40	
98	Biochar Adsorbents with Enhanced Hydrophobicity for Oil Spill Removal. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 9248-9260	9.5	40	
97	Official government statistics of road traffic deaths in India under-represent pedestrians and motorised two wheeler riders. <i>Injury Prevention</i> , 2017 , 23, 1-7	3.2	36	
96	Distribution of polycyclic aromatic hydrocarbons in Gomti river system, India. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2004 , 72, 1211-8	2.7	36	
95	Persistent organochlorine pesticide residues in alluvial groundwater aquifers of Gangetic Plains, India. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2005 , 74, 162-9	2.7	35	
94	Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods. <i>RSC Advances</i> , 2017 , 7, 8606-8624	3.7	34	
93	Coronavirus (SARS-CoV-2) in the environment: Occurrence, persistence, analysis in aquatic systems and possible management. <i>Science of the Total Environment</i> , 2021 , 765, 142698	10.2	33	
92	Removal of 2-Aminophenol Using Novel Adsorbents. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 1113-1122	3.9	32	
91	Assessment of motor vehicle use characteristics in three Indian cities. <i>Transportation Research, Part D: Transport and Environment</i> , 2016 , 44, 254-265	6.4	31	
90	Fast aniline and nitrobenzene remediation from water on magnetized and nonmagnetized Douglas fir biochar <i>Chemosphere</i> , 2019 , 225, 943-953	8.4	31	
89	Sustainable transport and the modernisation of urban transport in Delhi and Stockholm. <i>Cities</i> , 2010 , 27, 421-429	5.6	30	
88	Sustainable development of coconut shell activated carbon (CSAC) & a magnetic coconut shell activated carbon (MCSAC) for phenol (2-nitrophenol) removal. <i>RSC Advances</i> , 2016 , 6, 85390-85410	3.7	29	
87	Interface interactions between insecticide carbofuran and tea waste biochars produced at different pyrolysis temperatures. <i>Chemical Speciation and Bioavailability</i> , 2016 , 28, 110-118		29	
86	Two-wheeler injuries in Delhi, India: A study of crash victims hospitalized in a neuro-surgery ward. <i>Accident Analysis and Prevention</i> , 1984 , 16, 407-416	6.1	29	

85	Environmental pollution of soil with PAHs in energy producing plants zone. <i>Science of the Total Environment</i> , 2019 , 655, 232-241	10.2	29
84	An improved motorcycle helmet design for tropical climates. <i>Applied Ergonomics</i> , 1993 , 24, 427-31	4.2	28
83	Sustainable Low-Concentration Arsenite [As(III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide-Biochar Nanocomposite Adsorbents-A Mechanistic Study. <i>ACS Omega</i> , 2020 , 5, 2575-2593	3.9	27
82	Removal of alpha-picoline, beta-picoline, and gamma-picoline from synthetic wastewater using low cost activated carbons derived from coconut shell fibers. <i>Environmental Science & Environmental Scie</i>	10.3	27
81	Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil. <i>Chemosphere</i> , 2020 , 242, 125255	8.4	27
80	Antimonate removal from water using hierarchical macro-/mesoporous amorphous alumina. <i>Chemical Engineering Journal</i> , 2015 , 264, 617-624	14.7	26
79	QSTR modeling for qualitative and quantitative toxicity predictions of diverse chemical pesticides in honey bee for regulatory purposes. <i>Chemical Research in Toxicology</i> , 2014 , 27, 1504-15	4	26
78	Evaluation of Odd E ven Day Traffic Restriction Experiments in Delhi, India. <i>Transportation Research Record</i> , 2017 , 2627, 9-16	1.7	26
77	Heterogeneous persulfate activation by nano-sized Mn3O4 to degrade furfural from wastewater. Journal of Molecular Liquids, 2020 , 298, 112088	6	26
76	Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 22755-22763	5.1	25
75	Waste sludge derived adsorbents for arsenate removal from water. <i>Chemosphere</i> , 2020 , 239, 124832	8.4	24
74	Performance and mass transfer of aqueous fluoride removal by a magnetic alumina aerogel. <i>RSC Advances</i> , 2016 , 6, 112988-112999	3.7	23
73	Ciprofloxacin and acetaminophen sorption onto banana peel biochars: Environmental and process parameter influences. <i>Environmental Research</i> , 2021 , 201, 111218	7.9	23
72	Aqueous carbofuran removal using slow pyrolyzed sugarcane bagasse biochar: equilibrium and fixed-bed studies <i>RSC Advances</i> , 2019 , 9, 26338-26350	3.7	22
71	The care and transport of trauma victims by layperson emergency medical systems: a qualitative study in Delhi, India. <i>BMJ Global Health</i> , 2019 , 4, e001963	6.6	22
70	Synthesis of l-cysteine stabilized zero-valent iron (nZVI) nanoparticles for lead remediation from water. <i>Environmental Nanotechnology, Monitoring and Management</i> , 2017 , 7, 34-45	3.3	21
69	Particulate and gaseous emissions in two coastal cities@hennai and Vishakhapatnam, India. <i>Air Quality, Atmosphere and Health</i> , 2015 , 8, 559-572	5.6	21
68	Major ion chemistry of the ground water at the Khoda Village, Ghaziabad, India. <i>Sustainability of Water Quality and Ecology</i> , 2014 , 3-4, 133-150		20

(2021-2019)

67	Simplified Batch and Fixed-Bed Design System for Efficient and Sustainable Fluoride Removal from Water Using Slow Pyrolyzed Okra Stem and Black Gram Straw Biochars. <i>ACS Omega</i> , 2019 , 4, 19513-195	52 ³ 5 ⁹	19	
66	Identification of Fe and Zr oxide phases in an iron-zirconium binary oxide and arsenate complexes adsorbed onto their surfaces. <i>Journal of Hazardous Materials</i> , 2018 , 353, 340-347	12.8	18	
65	Studies on tractor related injuries in northern India. Accident Analysis and Prevention, 1998, 30, 53-60	6.1	18	
64	Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 14034-46	5.1	18	
63	Batch and Continuous Fixed-Bed Lead Removal Using Himalayan Pine Needle Biochar: Isotherm and Kinetic Studies. <i>ACS Omega</i> , 2020 , 5, 16366-16378	3.9	17	
62	Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts. <i>Science of the Total Environment</i> , 2021 , 780, 146274	10.2	17	
61	High capacity aqueous phosphate reclamation using Fe/Mg-layered double hydroxide (LDH) dispersed on biochar. <i>Journal of Colloid and Interface Science</i> , 2021 , 597, 182-195	9.3	16	
60	Childhood injuries in rural north India. <i>International Journal of Injury Control and Safety Promotion</i> , 2010 , 17, 45-52	1.8	15	
59	Urban street structure and traffic safety. Journal of Safety Research, 2017, 62, 63-71	4	14	
58	Road traffic injuries: a stocktaking. Best Practice and Research in Clinical Rheumatology, 2008, 22, 725-35	9 5.3	14	
57	Exploring groundwater hydrochemistry of alluvial aquifers using multi-way modeling. <i>Analytica Chimica Acta</i> , 2007 , 596, 171-82	6.6	14	
56	Development of grain threshers based on ergonomic design criteria. <i>Applied Ergonomics</i> , 2002 , 33, 503	-84.2	14	
55	Development of safer fodder-cutter machines: a case study from north India. <i>Safety Science</i> , 2004 , 42, 43-55	5.8	13	
54	Water decontamination using bio-based, chemically functionalized, doped, and ionic liquid-enhanced adsorbents: review. <i>Environmental Chemistry Letters</i> , 2021 , 19, 3075-3114	13.3	13	
53	Household arsenic contaminated water treatment employing iron oxide/bamboo biochar composite: An approach to technology transfer. <i>Journal of Colloid and Interface Science</i> , 2021 , 587, 767	- 171 3	13	
52	How much would low- and middle-income countries benefit from addressing the key risk factors of road traffic injuries?. <i>International Journal of Injury Control and Safety Promotion</i> , 2020 , 27, 83-90	1.8	12	
51	Modelling vehicular interactions for heterogeneous traffic flow using cellular automata with position preference. <i>Journal of Modern Transportation</i> , 2017 , 25, 163-177	3.7	12	
50	Adsorbents for real-scale water remediation: Gaps and the road forward. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105380	6.8	12	

49	Mental illness and injuries: emerging health challenges of urbanisation in South Asia. <i>BMJ, The</i> , 2017 , 357, j1126	5.9	11
48	Interaction of 2,4-dinitrophenol and 2,4,6-trinitrophenol with copper, zinc, molybdenum and chromium ferrocyanides. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1998 , 131, 89-93	5.1	11
47	Nanoscale zero-valent iron for aqueous lead removal. Advanced Materials Proceedings, 2017, 2, 235-241	1	11
46	Effects of Surface Iron Hydroxyl Group Site Densities on Arsenate Adsorption by Iron Oxide Nanocomposites. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 1020-1027	0.8	10
45	Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods. <i>SAR and QSAR in Environmental Research</i> , 2016 , 27, 539-58	3.5	10
44	Investigating the association between population density and travel patterns in Indian cities-An analysis of 2011 census data. <i>Cities</i> , 2020 , 100, 102656	5.6	9
43	Safety of young children on motorized two-wheelers around the world: A review of the global epidemiological evidence. <i>IATSS Research</i> , 2015 , 38, 83-91	4.2	9
42	Synthesis and Kinetic Study of Thermal Cycloimidization of Novel Poly(Amide Amic Acid) to Poly(Amide Imide) by Thermogravimetric Analysis. <i>Journal of Macromolecular Science - Physics</i> , 2011 , 50, 1388-1401	1.4	9
41	Safer Truck Front Design for Pedestrian Impacts*. <i>Traffic Injury Prevention</i> , 2000 , 2, 33-43		9
40	Traffic safety: Rights and obligations. Accident Analysis and Prevention, 2019, 128, 159-163	6.1	8
39	Removal of antimonate and antimonite from water by schwertmannite granules. <i>Desalination and Water Treatment</i> , 2016 , 57, 25639-25652		8
38	The stability and removal of water-dispersed CdSe/CdS core-shell quantum dots from water. <i>Chemosphere</i> , 2017 , 185, 926-933	8.4	8
37	Chemometrics assisted spectrophotometric determination of pyridine in water and wastewater. <i>Analytica Chimica Acta</i> , 2008 , 630, 10-8	6.6	8
36	Traffic safety and city structure: lessons for the future. <i>Salud Publica De Mexico</i> , 2008 , 50 Suppl 1, S93-1	0Ω7	8
35	Water as key to the sustainable development goals of South Sudan IA water quality assessment of Eastern Equatoria State. <i>Groundwater for Sustainable Development</i> , 2019 , 8, 255-270	6	7
34	Reply to the comments on HAZMAT 142 (2007) 1-53 'Arsenic removal from water/wastewater using adsorbentsa critical review' by D. Mohan and C.U. Pittman Jr. made by Zhenze Li et al. [HAZMAT 175 (2010) 1116-1117]. <i>Journal of Hazardous Materials</i> , 2011 , 185, 1614-7	12.8	7
33	A Review of Cellular Automata Model for Heterogeneous Traffic Conditions 2015 , 471-478		7
32	Inter-moieties reactivity correlations: an approach to estimate the reactivity endpoints of major atmospheric reactants towards organic chemicals. <i>RSC Advances</i> , 2016 , 6, 50297-50305	3.7	7

(2021-2017)

31	Analysis of Pedestrian Movement on Delhi Roads by Using Naturalistic Observation Techniques. <i>Transportation Research Record</i> , 2017 , 2634, 95-100	1.7	6
30	A property-performance correlation and mass transfer study of As(V) adsorption on three mesoporous aluminas. <i>RSC Advances</i> , 2016 , 6, 80630-80639	3.7	6
29	Safety of motorized two-wheeler riders in the formal and informal transport sector. <i>International Journal of Injury Control and Safety Promotion</i> , 2020 , 27, 51-60	1.8	4
28	Synthesis, characterization, and investigation of structure-thermal cycloimidization relationship of novel poly(amide amic acid)s to poly(amide imide)s by thermogravimetric analysis. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2007 , 45, 2937-2947	2.6	4
27	Future of road safety and SDG 3.6 goals in six Indian cities. IATSS Research, 2021, 45, 12-18	4.2	4
26	Preparation of Activated and Non-Activated Carbon from Conocarpus Pruning Waste as Low-Cost Adsorbent for Removal of Heavy Metal Ions from Aqueous Solution. <i>BioResources</i> , 2015 , 11,	1.3	3
25	Intrusion of heavy metals/metalloids into rice (Oryza sativa L.) in relation to their status in two different agricultural management systems in Sri Lanka. <i>Groundwater for Sustainable Development</i> , 2021 , 14, 100619	6	3
24	Why do three-wheelers carrying schoolchildren suffer very low fatal crashes?. <i>IATSS Research</i> , 2015 , 38, 130-134	4.2	2
23	662 Motorcycle helmet and car seat belt use patterns in Delhi, India: implications for traffic safety interventions. <i>Injury Prevention</i> , 2016 , 22, A237.3-A238	3.2	2
22	Understanding the Road Safety Performance of OECD Countries 2016 , 1-15		2
21	Preventing motor vehicle crash injuries and deaths: science vs. folklore lessons from history. <i>International Journal of Injury Control and Safety Promotion</i> , 2020 , 27, 3-11	1.8	2
20	Recent Developments in Aqueous Arsenic(III) Remediation Using Biomass-Based Adsorbents. <i>ACS Symposium Series</i> , 2020 , 197-251	0.4	2
19	Granular Activated Carbon92		2
18	Reply to Comment on the Removal Mechanism of Hexavalent Chromium by Biomaterials or Biomaterial-Based Activated Carbons (Comment on Removal of Hexavalent Chromium from Aqueous Solution Using Low-Cost Activated Carbons Derived from Agricultural Waste Materials	3.9	1
17	Shape Memory Adsorbents for Water Remediation: Recent Progress, Associated Hydrodynamics, and Research Needs. <i>Water, Air, and Soil Pollution</i> , 2021 , 232, 1	2.6	1
16	Dealing with existing theory: national fatality rates, vehicle standards and personal safety. <i>International Journal of Injury Control and Safety Promotion</i> , 2020 , 27, 12-19	1.8	1
15	What can we learn from the historic road safety performance of high-income countries?. <i>International Journal of Injury Control and Safety Promotion</i> , 2020 , 27, 27-34	1.8	1
14	Nanobiochar: A sustainable solution for agricultural and environmental applications 2021 , 501-519		1

13	Sorptive removal of pharmaceuticals using sustainable biochars 2022 , 395-427		1
12	Biochar adsorption system designs 2022 , 153-203		1
11	Biochar and biochar composites for oil sorption 2022 , 527-554		1
10	Biochar and biochar composites for poly- and perfluoroalkyl substances (PFAS) sorption 2022 , 555-595		O
9	Nanobiochar for aqueous contaminant removal 2022 , 667-704		O
8	Sources, spatio-temporal distribution and depth variations in groundwater salinity of semi-arid Rohtak district, Haryana, India. <i>Groundwater for Sustainable Development</i> , 2022 , 100790	6	O
7	Sustainable Biochar - A Tool for Climate Change Mitigation, Soil Management and Water and Wastewater Treatment 2016 , 949-952		
6	Emergence of Base Catalysts for Synthesis of Biodiesel 2012 , 251-289		
5	Can Biodegradabilitylof adsorbents constitute an Achilles Theel In real-world water purification? Perspectives and opportunities. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107321	6.8	
4	Competitive Adsorption of Several Organics and Heavy Metals on Activated Carbon in Water107		
3	858 Automobile manufacturers, advertising and traffic safety: case study from India. <i>Injury Prevention</i> , 2016 , 22, A306.1-A306	3.2	
2	Arsenic removal from household drinking water by biochar and biochar composites: A focus on scale-up 2022 , 277-320		

Agricultural Residue-Derived Sustainable Nanoadsorbents for Wastewater Treatment **2022**, 235-259