Dengke Shen

List of Publications by Citations

Source: https://exaly.com/author-pdf/3952222/dengke-shen-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,954 23 47 g-index

47 g-index

47 ext. papers ext. citations avg, IF

48 49 4.96 L-index

#	Paper	IF	Citations
43	Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. <i>Nano Letters</i> , 2014 , 14, 923-32	11.5	503
42	Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13161-6	16.4	459
41	Spatially Confined Fabrication of CoreBhell Gold [email@protected] Silica for Near-Infrared Controlled Photothermal Drug Release. <i>Chemistry of Materials</i> , 2013 , 25, 3030-3037	9.6	276
40	Successive Layer-by-Layer Strategy for Multi-Shell Epitaxial Growth: Shell Thickness and Doping Position Dependence in Upconverting Optical Properties. <i>Chemistry of Materials</i> , 2013 , 25, 106-112	9.6	240
39	Hierarchically Engineered Mesoporous Metal-Organic Frameworks toward Cell-free Immobilized Enzyme Systems. <i>CheM</i> , 2018 , 4, 1022-1034	16.2	187
38	Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm. <i>Scientific Reports</i> , 2013 , 3, 3536	4.9	171
37	Ultradispersed Palladium Nanoparticles in Three-Dimensional Dendritic Mesoporous Silica Nanospheres: Toward Active and Stable Heterogeneous Catalysts. <i>ACS Applied Materials & Amp;</i> Interfaces, 2015 , 7, 17450-9	9.5	92
36	YolkBhell Structured Mesoporous Nanoparticles with Thioether-Bridged Organosilica Frameworks. <i>Chemistry of Materials</i> , 2014 , 26, 5980-5987	9.6	82
35	A precise polyrotaxane synthesizer. <i>Science</i> , 2020 , 368, 1247-1253	33.3	72
34	Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. <i>Nano Research</i> , 2015 , 8, 2503-2514	10	70
33	Mesoporous Silica Thin Membranes with Large Vertical Mesochannels for Nanosize-Based Separation. <i>Advanced Materials</i> , 2017 , 29, 1702274	24	65
32	Selective Extraction of C by a Tetragonal Prismatic Porphyrin Cage. <i>Journal of the American Chemical Society</i> , 2018 , 140, 13835-13842	16.4	64
31	Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. <i>ACS Central Science</i> , 2015 , 1, 400-8	16.8	63
30	Germanium Nanograin Decoration on Carbon Shell: Boosting Lithium-Storage Properties of Silicon Nanoparticles. <i>Advanced Functional Materials</i> , 2016 , 26, 7800-7806	15.6	59
29	Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides. <i>Materials Horizons</i> , 2014 , 1, 439	14.4	47
28	A Dynamic Tetracationic Macrocycle Exhibiting Photoswitchable Molecular Encapsulation. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1280-1289	16.4	44
27	Ordered Macro-/Mesoporous Anatase Films with High Thermal Stability and Crystallinity for Photoelectrocatalytic Water-Splitting. <i>Advanced Energy Materials</i> , 2014 , 4, 1301725	21.8	42

26	Molecular Russian dolls. <i>Nature Communications</i> , 2018 , 9, 5275	17.4	40
25	Synthesis of Mesoporous Silica/Reduced Graphene Oxide Sandwich-Like Sheets with Enlarged and Bunneling Mesochannels. <i>Chemistry of Materials</i> , 2015 , 27, 5577-5586	9.6	36
24	A Molecular Dual Pump. Journal of the American Chemical Society, 2019, 141, 17472-17476	16.4	32
23	Controllable fabrication of dendritic mesoporous silicalarbon nanospheres for anthracene removal. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11045	13	29
22	Artificial Molecular Pump Operating in Response to Electricity and Light. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14443-14449	16.4	28
21	Epitaxial Growth of Ecyclodextrin-Containing Metal-Organic Frameworks Based on a Host-Guest Strategy. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11402-11407	16.4	27
20	Ring-in-Ring(s) Complexes Exhibiting Tunable Multicolor Photoluminescence. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16849-16860	16.4	20
19	Carbon functionalized mesoporous silica-based gas sensors for indoor volatile organic compounds. Journal of Colloid and Interface Science, 2016, 477, 54-63	9.3	20
18	High-Efficiency Gold Recovery Using Cucurbit[6]uril. <i>ACS Applied Materials & Discourt Materi</i>	9.5	18
17	Stabilizing the Naphthalenediimide Radical within a Tetracationic Cyclophane. <i>Journal of the American Chemical Society</i> , 2019 , 141, 16915-16922	16.4	15
16	Organic Counteranion Co-assembly Strategy for the Formation of Ecyclodextrin-Containing Hybrid Frameworks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2042-2050	16.4	15
15	TetrazineBox: A Structurally Transformative Toolbox. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5419-5428	16.4	14
14	Rare Earth core/shell nanobarcodes for multiplexed trace biodetection. <i>Analytical Chemistry</i> , 2015 , 87, 5745-52	7.8	13
13	Mixed-flow design for microfluidic printing of two-component polymer semiconductor systems. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17551-17557	,11.5	12
12	A Hierarchical Nanoporous Diamondoid Superstructure. <i>CheM</i> , 2019 , 5, 2353-2364	16.2	12
11	Mixed-Valence Superstructure Assembled from a Mixed-Valence Host-Guest Complex. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9387-9391	16.4	12
10	Molecular-Pump-Enabled Synthesis of a Daisy Chain Polymer. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10308-10313	16.4	11
9	Highly Stable Organic Bisradicals Protected by Mechanical Bonds. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7190-7197	16.4	10

8	Radical Cyclic [3] Daisy Chains. <i>CheM</i> , 2021 , 7, 174-189	16.2	10
7	Tuning radical interactions in trisradical tricationic complexes by varying host-cavity sizes. <i>Chemical Science</i> , 2020 , 11, 107-112	9.4	9
6	Selective Photodimerization in a Cyclodextrin Metal-Organic Framework. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9129-9139	16.4	9
5	Suit[3]ane. Journal of the American Chemical Society, 2020, 142, 20152-20160	16.4	8
4	Electron-catalysed molecular recognition <i>Nature</i> , 2022 , 603, 265-270	50.4	7
3	Radically Enhanced Dual Recognition. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25454-2546	216.4	4
2	Ultrahigh Adsorption Capacity and Kinetics of Vertically Oriented Mesoporous Coatings for Removal of Organic Pollutants. <i>Small</i> , 2021 , 17, e2101363	11	2
1	Nanoparticles: Germanium Nanograin Decoration on Carbon Shell: Boosting Lithium-Storage Properties of Silicon Nanoparticles (Adv. Funct. Mater. 43/2016). <i>Advanced Functional Materials</i> ,	15.6	