
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/395218/publications.pdf Version: 2024-02-01

KUDT D FAUSCH

#	Article	IF	CITATIONS
1	Interspecific social dominance networks reveal mechanisms promoting coexistence in sympatric charr in Hokkaido, Japan. Journal of Animal Ecology, 2021, 90, 515-527.	2.8	11
2	Evaluating a pattern of ecological character displacement: charr jaw morphology and diet diverge in sympatry versus allopatry across catchments in Hokkaido, Japan. Biological Journal of the Linnean Society, 2020, 129, 356-378.	1.6	11
3	Magnitude and direction of stream–forest community interactions change with timescale. Ecology, 2020, 101, e03064.	3.2	22
4	Headwater Streams andÂWetlands are CriticalÂfor Sustaining Fish, Fisheries, and Ecosystem Services. Fisheries, 2019, 44, 73-91.	0.8	110
5	The Natural Wood Regime in Rivers. BioScience, 2019, 69, 259-273.	4.9	121
6	Predicting Persistence of Rio Grande Cutthroat Trout Populations in an Uncertain Future. North American Journal of Fisheries Management, 2019, 39, 819-848.	1.0	12
7	Conserving fluxes of terrestrial invertebrates to trout in streams: A first field experiment on the effects of cattle grazing. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 910-922.	2.0	4
8	Water diversion reduces abundance and survival of two Mediterranean cyprinids. Ecology of Freshwater Fish, 2018, 27, 481-491.	1.4	18
9	Crossing boundaries: Shigeru Nakano's enduring legacy for ecology. Ecological Research, 2018, 33, 119-133.	1.5	1
10	Nonnative Trout Invasions Combined with Climate Change Threaten Persistence of Isolated Cutthroat Trout Populations in the Southern Rocky Mountains. North American Journal of Fisheries Management, 2017, 37, 314-325.	1.0	22
11	A Dynamic Flow Regime Supports an Intact Great Plains Stream Fish Assemblage. Transactions of the American Fisheries Society, 2017, 146, 903-916.	1.4	5
12	Groundwater declines are linked to changes in Great Plains stream fish assemblages. Proceedings of the United States of America, 2017, 114, 7373-7378.	7.1	89
13	Thermal regimes of Rocky Mountain lakes warm with climate change. PLoS ONE, 2017, 12, e0179498.	2.5	33
14	Conservation of Native Pacific Trout Diversity in Western North America. Fisheries, 2016, 41, 286-300.	0.8	39
15	Management of Large Wood in Streams: An Overview and Proposed Framework for Hazard Evaluation. Journal of the American Water Resources Association, 2016, 52, 315-335.	2.4	84
16	A Comprehensive Approach for Habitat Restoration in the Columbia Basin. Fisheries, 2015, 40, 124-135.	0.8	43
17	A historical perspective on drift foraging models for stream salmonids. Environmental Biology of Fishes, 2014, 97, 453-464.	1.0	27
18	Can replacement of native by non-native trout alter stream-riparian food webs?. Freshwater Biology, 2013, 58, 1694-1709.	2.4	22

#	Article	IF	CITATIONS
19	Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin. Global Change Biology, 2013, 19, 1383-1398.	9.5	65
20	Evaluating the Success of Arkansas Darter Translocations in Colorado: An Occupancy Sampling Approach. Transactions of the American Fisheries Society, 2012, 141, 825-840.	1.4	17
21	The Past as Prelude to the Future for Understanding 21st entury Climate Effects on Rocky Mountain Trout. Fisheries, 2012, 37, 542-556.	0.8	70
22	Colonization and extinction in dynamic habitats: an occupancy approach for a Great Plains stream fish assemblage. Ecology, 2012, 93, 858-867.	3.2	60
23	Are invasive and native trout functionally equivalent predators? Results and lessons from a field experiment. Aquatic Conservation: Marine and Freshwater Ecosystems, 2012, 22, 787-798.	2.0	16
24	Grazing management influences the subsidy of terrestrial prey to trout in central Rocky Mountain streams (USA). Freshwater Biology, 2012, 57, 1512-1529.	2.4	26
25	Response of trout populations in five Colorado streams two decades after habitat manipulation. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 2057-2063.	1.4	39
26	Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders. Oecologia, 2011, 167, 503-512.	2.0	61
27	Accurate Estimation of Salmonid Abundance in Small Streams using Nighttime Removal Electrofishing: an Evaluation using Marked Fish. North American Journal of Fisheries Management, 2011, 31, 403-415.	1.0	32
28	Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14175-14180.	7.1	484
29	Large inâ€stream wood studies: a call for common metrics. Earth Surface Processes and Landforms, 2010, 35, 618-625.	2.5	68
30	Multiple stressors in north temperate streams: lessons from linked forest–stream ecosystems in northern Japan. Freshwater Biology, 2010, 55, 120-134.	2.4	62
31	Streamflow Reductions and Habitat Drying Affect Growth, Survival, and Recruitment of Brassy Minnow across a Great Plains Riverscape. Transactions of the American Fisheries Society, 2010, 139, 1566-1583.	1.4	46
32	Invasion versus Isolation: Tradeâ€Offs in Managing Native Salmonids with Barriers to Upstream Movement. Conservation Biology, 2009, 23, 859-870.	4.7	248
33	A paradox of trout invasions in North America. Biological Invasions, 2008, 10, 685-701.	2.4	94
34	Evolution, Ecology, and Conservation of Dolly Varden, White spotted Char, and Bull Trout. Fisheries, 2008, 33, 537-550.	0.8	88
35	When Eradication is not an Option: Modeling Strategies for Electrofishing Suppression of Nonnative Brook Trout to Foster Persistence of Sympatric Native Cutthroat Trout in Small Streams. North American Journal of Fisheries Management, 2008, 28, 1847-1867.	1.0	36
36	Ecology and Life History of Coaster Brook Trout and Potential Bottlenecks in Their Rehabilitation. North American Journal of Fisheries Management, 2008, 28, 1321-1342.	1.0	33

#	Article	IF	CITATIONS
37	Analysis of trade-offs between threats of invasion by nonnative brook trout (<i>Salvelinus) Tj ETQq1 1 0.784314</i>	rgBT /Ov 1.4	erlock 10 Tf 92
38	Improved Grazing Management Increases Terrestrial Invertebrate Inputs that Feed Trout in Wyoming Rangeland Streams. Transactions of the American Fisheries Society, 2007, 136, 1216-1230.	1.4	57
39	Cold Summer Temperature Limits Recruitment of Ageâ€0 Cutthroat Trout in Highâ€Elevation Colorado Streams. Transactions of the American Fisheries Society, 2007, 136, 1231-1244.	1.4	57
40	Cold Summer Temperature Regimes Cause a Recruitment Bottleneck in Ageâ€0 Colorado River Cutthroat Trout Reared in Laboratory Streams. Transactions of the American Fisheries Society, 2007, 136, 639-654.	1.4	30
41	Invading rainbow trout usurp a terrestrial prey subsidy from native charr and reduce their growth and abundance. Oecologia, 2007, 153, 461-470.	2.0	100
42	Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biology, 2005, 50, 201-220.	2.4	920
43	Riparian vegetation loss, stream channelization, and webâ€weaving spiders in northern Japan. Ecological Research, 2005, 20, 646-651.	1.5	40
44	Competition between Hatchery-Reared and Wild Juvenile Chinook Salmon in Enclosures in the Sacramento River, California. Transactions of the American Fisheries Society, 2005, 134, 44-58.	1.4	22
45	POPULATION ECOLOGY OF AN INVASION: EFFECTS OF BROOK TROUT ON NATIVE CUTTHROAT TROUT. , 2004, 14, 754-772.		153
46	FISH INVASION RESTRUCTURES STREAM AND FOREST FOOD WEBS BY INTERRUPTING RECIPROCAL PREY SUBSIDIES. Ecology, 2004, 85, 2656-2663.	3.2	410
47	Abundance and Size Distribution of Ocean-Type Juvenile Chinook Salmon in the Upper Sacramento River Margin before and after Hatchery Releases. North American Journal of Fisheries Management, 2004, 24, 1447-1455.	1.0	6
48	Title is missing!. Biological Invasions, 2003, 5, 239-259.	2.4	38
49	Upstream movement by nonnative brook trout (Salvelinus fontinalis) promotes invasion of native cutthroat trout (Oncorhynchus clarki) habitat. Canadian Journal of Fisheries and Aquatic Sciences, 2003, 60, 1502-1516.	1.4	56
50	Multiscale Processes Regulate Brassy Minnow Persistence in a Great Plains River. Transactions of the American Fisheries Society, 2003, 132, 840-855.	1.4	55
51	MINIMUM HABITAT REQUIREMENTS FOR ESTABLISHING TRANSLOCATED CUTTHROAT TROUT POPULATIONS. , 2002, 12, 535-551.		158
52	Landscapes to Riverscapes: Bridging the Gap between Research and Conservation of Stream Fishes. BioScience, 2002, 52, 483.	4.9	1,193
53	Linkages between stream and forest food webs: Shigeru Nakano's legacy for ecology in Japan. Trends in Ecology and Evolution, 2002, 17, 429-434.	8.7	39
54	Why do Foraging Stream Salmonids Move During Summer?. Environmental Biology of Fishes, 2002, 64, 139-153.	1.0	124

#	Article	IF	CITATIONS
55	MINIMUM HABITAT REQUIREMENTS FOR ESTABLISHING TRANSLOCATED CUTTHROAT TROUT POPULATIONS. , 2002, 12, 535.		1
56	FLOOD DISTURBANCE REGIMES INFLUENCE RAINBOW TROUT INVASION SUCCESS AMONG FIVE HOLARCTIC REGIONS. , 2001, 11, 1438-1455.		250
57	Shigeru Nakano – An Uncommon Japanese Fish Ecologist. Environmental Biology of Fishes, 2000, 59, 359-364.	1.0	12
58	DYNAMICS OF INTERMITTENT STREAM HABITAT REGULATE PERSISTENCE OF A THREATENED FISH AT MULTIPLE SCALES. , 2000, 10, 1774-1791.		285
59	Factors Influencing Success of Greenback Cutthroat Trout Translocations. North American Journal of Fisheries Management, 2000, 20, 994-1004.	1.0	90
60	Flexible niche partitioning via a foraging mode shift: a proposed mechanism for coexistence in stream-dwelling charrs. Journal of Animal Ecology, 1999, 68, 1079-1092.	2.8	181
61	Sustaining Ecosystem Services in Human-Dominated Watersheds: Biohydrology and Ecosystem Processes in the South Platte River Basin. Environmental Management, 1999, 24, 39-54.	2.7	78
62	Competitive interactions for foraging microhabitat among introduced brook charr, Salvelinus fontinalis, and native bull charr, S. confluentus, and westslope cutthroat trout, Oncorhynchus clarki lewisi, in a Montana stream. Environmental Biology of Fishes, 1998, 52, 345-355.	1.0	73
63	Research on fish ecology in Japan: a brief history and selected review. Environmental Biology of Fishes, 1998, 52, 75-95.	1.0	7
64	Experimentally induced foraging mode shift by sympatric charrs in a Japanese mountain stream. Behavioral Ecology, 1997, 8, 414-420.	2.2	109
65	Thermal Tolerance and Vegetation Preference of Arkansas Darter and Johnny Darter from Colorado Plains Streams. Transactions of the American Fisheries Society, 1997, 126, 676-686.	1.4	30
66	Spinal Injury Rates in Three Wild Trout Populations in Colorado after Eight Years of Backpack Electrofishing. North American Journal of Fisheries Management, 1997, 17, 308-313.	1.0	33
67	Trout population response to habitat enhancement in six northern Colorado streams. Canadian Journal of Fisheries and Aquatic Sciences, 1995, 52, 34-53.	1.4	110
68	Diel Habitat Selection by Brown Trout in the Rio Grande River, Colorado, after Placement of Boulder Structures. North American Journal of Fisheries Management, 1994, 14, 99-111.	1.0	34
69	Comparison of Visible Implant Tags and Floy Anchor Tags on Hatchery Rainbow Trout. North American Journal of Fisheries Management, 1994, 14, 636-642.	1.0	47
70	Distribution of two congeneric charrs in streams of Hokkaido Island, Japan: considering multiple factors across scales. Oecologia, 1994, 100-100, 1-12.	2.0	134
71	Notes: Spawning Behavior of Bull Trout in the Upper Flathead Drainage, Montana, with Special Reference to Hybridization with Brook Trout. Transactions of the American Fisheries Society, 1994, 123, 988-992.	1.4	34
72	Underestimation of Trout Population Size by Maximum-Likelihood Removal Estimates in Small Streams. North American Journal of Fisheries Management, 1992, 12, 768-776.	1.0	127

#	Article	IF	CITATIONS
73	Large Woody Debris and Salmonid Habitat in a Small Coastal British Columbia Stream. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49, 682-693.	1.4	284
74	Resource utilization by bull char and cutthroat trout in a mountain stream in Montana, U.S.A Japanese Journal of Ichthyology, 1992, 39, .	0.1	26
75	Variable Fish Communities and the Index of Biotic Integrity in a Western Great Plains River. Transactions of the American Fisheries Society, 1991, 120, 752-769.	1.4	71
76	Disturbance and Fish Communities in Intermittent Tributaries of a Western Great Plains River. Copeia, 1991, 1991, 659.	1.3	101
77	Competition among Juveniles of Coho Salmon, Brook Trout, and Brown Trout in a Laboratory Stream, and Implications for Great Lakes Tributaries. Transactions of the American Fisheries Society, 1986, 115, 363-381.	1.4	171
78	Profitable stream positions for salmonids: relating specific growth rate to net energy gain. Canadian Journal of Zoology, 1984, 62, 441-451.	1.0	710
79	Competition Between Brook Trout (<i>Salvelinus fontinalis</i>) and Brown Trout (<i>Salmo) Tj ETQq1 1 0.7843 1981, 38, 1220-1227.</i>	14 rgBT /C 1.4	Overlock 10 Tf 414