Heather M Kharouba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3952062/publications.pdf Version: 2024-02-01

		687363	794594
20	1,616	13	19
papers	citations	h-index	g-index
21	21	21	2839
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Decline in common milkweed along roadsides around Ottawa, Canada. Ecoscience, 2022, 29, 25-37.	1.4	1
2	Autumn larval cold tolerance does not predict the northern range limit of a widespread butterfly species. Ecology and Evolution, 2021, 11, 8332-8346.	1.9	4
3	Low prevalence of the parasite <i>Ophryocystis elektroscirrha</i> at the range edge of the eastern North American monarch (<i>Danaus plexippus</i>) butterfly population. Canadian Journal of Zoology, 2021, 99, 409-413.	1.0	3
4	Anthropogenic disturbance promotes the abundance of a newly introduced butterfly, the European common blue (<i>Polyommatus icarus</i> ; Lepidoptera: Lycaenidae), in Canada. Canadian Journal of Zoology, 2021, 99, 642-652.	1.0	7
5	Disentangling the direct, indirect, and combined effects of experimental warming on a plant–insect herbivore interaction. Ecosphere, 2021, 12, e03778.	2.2	9
6	Disconnects between ecological theory and data in phenological mismatch research. Nature Climate Change, 2020, 10, 406-415.	18.8	88
7	Using insect natural history collections to study global change impacts: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20170405.	4.0	52
8	The mechanisms of phenology: the patterns and processes of phenological shifts. Ecological Monographs, 2019, 89, e01337.	5.4	172
9	Global shifts in the phenological synchrony of species interactions over recent decades. Proceedings of the United States of America, 2018, 115, 5211-5216.	7.1	290
10	Insect Development, Thermal Plasticity and Fitness Implications in Changing, Seasonal Environments. Integrative and Comparative Biology, 2017, 57, 988-998.	2.0	49
11	Variability in plant nutrients reduces insect herbivore performance. Nature, 2016, 539, 425-427.	27.8	186
12	The effects of experimental warming on the timing of a plant–insect herbivore interaction. Journal of Animal Ecology, 2015, 84, 785-796.	2.8	26
13	Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight. Journal of Animal Ecology, 2015, 84, 1311-1321.	2.8	47
14	Predicting the sensitivity of butterfly phenology to temperature over the past century. Global Change Biology, 2014, 20, 504-514.	9.5	56
15	A bioenergetic framework for the temperature dependence of trophic interactions. Ecology Letters, 2014, 17, 902-914.	6.4	268
16	The ice age ecologist: testing methods for reserve prioritization during the last global warming. Global Ecology and Biogeography, 2013, 22, 289-301.	5.8	47
17	Setting conservation priorities when what you see is not what you get. Animal Conservation, 2013, 16, 14-15.	2.9	7
18	Historically calibrated predictions of butterfly species' range shift using global change as a pseudoâ€experiment. Ecology, 2009, 90, 2213-2222.	3.2	107

#	Article	IF	CITATIONS
19	Using species distribution models to effectively conserve biodiversity into the future. Biodiversity, 2008, 9, 39-46.	1.1	5
20	The Macroecological Contribution to Global Change Solutions. Science, 2007, 316, 1581-1584.	12.6	192