Zhi-Hong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/39517/publications.pdf

Version: 2024-02-01

111	1,449	18	30
papers	citations	h-index	g-index
116		116	
116	116	116	937
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Solid CoZn glycerate template-based engineering of yolk-shell bimetallic sulfides heterostructures microspheres confined in N, S-doped carbon as anode materials for lithium/sodium-ion batteries. Journal of Alloys and Compounds, 2022, 902, 163631.	5.5	10
2	Hierarchical ultrathin NiFe-borate layered double hydroxide nanosheets encapsulated into biomass-derived nitrogen-doped carbon for efficient electrocatalytic oxygen evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128092.	4.7	6
3	Trimetallic RhNiFe Phosphide Nanosheets for Electrochemical Reforming of Ethanol. ACS Applied Nano Materials, 2022, 5, 4948-4957.	5.0	9
4	Feasible synthesis of hierarchical porous MgAl-borate LDHs functionalized Fe3O4@SiO2 magnetic microspheres with excellent adsorption performance toward congo red and Cr(VI) pollutants. Journal of Alloys and Compounds, 2021, 861, 157974.	5 . 5	44
5	Preparation and formation mechanism of graphene oxide supported hollow mesoporous Mg2Si3O6(OH)4 micro-nanospheres with highly efficient methylene blue dye removal from wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125936.	4.7	3
6	Surface selenium doped hollow heterostructure/defects Co-Fe sulfide nanoboxes for enhancing oxygen evolution reaction and supercapacitors. Electrochimica Acta, 2021, 374, 137962.	5.2	33
7	Fabrication of a dual Z-scheme GACN/NiO/Ni3(BO3)2 composite with excellent photocatalytic activity for methylene blue and tetracycline removal. Separation and Purification Technology, 2021, 264, 118414.	7.9	24
8	Preparation of hollow hierarchical porous CoMgAl-borate LDH ball-flower and its calcinated product with extraordinary adsorption capacity for Congo red and methyl orange. Applied Clay Science, 2021, 207, 106093.	5 . 2	30
9	Ca[B ₈ O ₁₁ (OH) ₄] : Eu ²⁺ – A Highly Efficient Deep Blueâ€Emitting Phosphor Prepared by Lowâ€Temperature Selfâ€reduction. Chemistry - A European Journal, 2021, 27, 13819-13827.	3.3	6
10	Highly efficient blue-emitting phosphor of $Sr[B8011(OH)4]:Eu2+ prepared by a self-reduction method. Chemical Communications, 2021, 57, 3371-3374.$	4.1	8
11	Tri-functional molecular relay to fabricate size-controlled CoO _x nanoparticles and WO ₃ photoanode for an efficient photoelectrochemical water oxidation. Catalysis Science and Technology, 2020, 10, 5677-5687.	4.1	10
12	Kinetics enhanced hierarchical Ni ₂ P _{1â^'x} S _x /Ni@carbon/graphene yolkâ€"shell microspheres boosting advanced sodium/potassium storage. Journal of Materials Chemistry A, 2020, 8, 23994-24004.	10.3	28
13	Hierarchical Ultrathin Mo/MoS _{2(1â^'} <i>_x</i> _x <i>_xNanosheets Assembled on P, N Coâ€Doped Carbon Nanotubes for Hydrogen Evolution in Both Acidic and Alkaline Electrolytes. Small. 2020. 16. e2004973.</i>	sub>10.0	29
14	Few-layer WS ₂ nanosheets with oxygen-incorporated defect-sulphur entrapped by a	3.6	13
15	Controllable hydrothermal synthesis and morphology evolution of Zn4B6O13:Tb/Eu phosphors with tunable luminescent properties. Advanced Powder Technology, 2020, 31, 1633-1642.	4.1	13
16	Facial preparation of hierarchical porous Ba(B2Si2O8) microsphere by sacrificial-template method and its highly efficient selective adsorption of triphenylmethane dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 124883.	4.7	10
17	Preparation of 2CaO·3B2O3·H2O nanomaterials and evaluation of their flame retardant properties by a thermal analysis method. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2783-2788.	3.6	2
18	Three hierarchical porous magnesium borate microspheres: a serial preparation strategy, growth mechanism and excellent adsorption behavior for Congo red. RSC Advances, 2019, 9, 20009-20018.	3.6	10

#	Article	IF	CITATIONS
19	Reduced graphene oxide-supported CoP nanocrystals confined in porous nitrogen-doped carbon nanowire for highly enhanced lithium/sodium storage and hydrogen evolution reaction. Nano Research, 2019, 12, 2872-2880.	10.4	49
20	Preparation of borate anions intercalated MgAl-LDHs microsphere and its calcinated product with superior adsorption performance for Congo red. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575, 373-381.	4.7	42
21	GO-graphene ink-derived hierarchical 3D-graphene architecture supported Fe3O4 nanodots as high-performance electrodes for lithium/sodium storage and supercapacitors. Journal of Colloid and Interface Science, 2019, 536, 463-473.	9.4	61
22	Excellent adsorption performance for Congo red on hierarchical porous magnesium borate microsphere prepared by a template-free hydrothermal method. Journal of the Taiwan Institute of Chemical Engineers, 2018, 86, 92-100.	5.3	15
23	In situ preparation and formation mechanism of 2MgO·B2O3·1.5H2O–Mg(OH)2 nanocomposite and its synergistic flame retardancy. Journal of Thermal Analysis and Calorimetry, 2018, 132, 59-64.	3.6	5
24	Thermochemical properties of two mixed alkali-alkaline earth metal borates with NLO properties for NaCaBO 3 and Li 4 CaB 2 O 6. Journal of Chemical Thermodynamics, 2018, 121, 170-174.	2.0	5
25	Thermodynamic properties for two mixed alkali-transition metal borates of Li6Zn3B4O12 and Na3ZnB5O10. Journal of Chemical Thermodynamics, 2018, 125, 235-239.	2.0	4
26	Preparation and thermodynamic characterization of 2CaO·B2O3·H2O nanomaterials with enhanced flame retardant properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 563-568.	4.7	13
27	Luminescence properties in relation to controllable morphologies of the InBO 3 :Eu 3+ phosphor. Materials Research Bulletin, 2017, 94, 31-37.	5.2	11
28	Preparation of $2MgO\hat{A}\cdot B2O3\hat{A}\cdot 1.5H2O$ nanomaterials and evaluation of their flame retardant properties by a thermal decomposition kinetic method. Journal of Thermal Analysis and Calorimetry, 2017, 129, 715-719.	3.6	11
29	Controlling the structure and morphology of zinc borate by adjusting the reaction temperature and pH value: formation mechanisms and luminescent properties. RSC Advances, 2017, 7, 3695-3703.	3.6	16
30	Controlled preparation and photoluminescence properties of Zn6O(OH)(BO3)3:Eu(III) phosphors. Advanced Powder Technology, 2017, 28, 2613-2620.	4.1	6
31	Enhanced photoluminescence property of co-doped ZnB ₂ O ₄ : Eu ³⁺ , Tb ³⁺ phosphor prepared by a thermal conversion method. Journal of Materials Research, 2016, 31, 195-201.	2.6	6
32	Two interpenetrating 3D MOFs constructed by bis(imidazole) and V-shape carboxylate co-ligands: synthesis, structure, gas adsorption and photoluminescent properties. Journal of Coordination Chemistry, 2016, 69, 2553-2562.	2.2	10
33	A unique (3,10)-connected magnesium/nickel-based metal–organic framework constructed from an unusual kgd supermolecular building layer via mixed linkers and solid solution approach. CrystEngComm, 2016, 18, 8358-8361.	2.6	3
34	Preparation of Eu3+ doped Al5BO9 red phosphor by a facile thermal conversion method and its enhanced luminescent property. Journal of Materials Research, 2016, 31, 1433-1439.	2.6	7
35	Synthesis, thermal behavior and the temperature-dependent fluorescence property of a new organic amine borate of $[(CH3)4N][B5O6(OH)4]\hat{A}\cdot 1/2H2O$. Journal of Thermal Analysis and Calorimetry, 2016, 126, 913-918.	3.6	3
36	Thermodynamic properties of two microporous materials for Na 2 [M 2 B 2 O 2] (M = Co 2 + , Cu 2 +). Journal of Chemical Thermodynamics, 2016, 101, 157-161.	2.0	2

#	Article	IF	Citations
37	Thermochemical properties of microporous materials for two borogermanates, \hat{l}^2 -K 2 [B 2 Ge 3 O 10] and NH 4 [BGe 3 O 8]. Journal of Chemical Thermodynamics, 2016, 92, 29-34.	2.0	4
38	Three metal induced 3D coordination polymers based on H3BTC and 1,3-BIP as co-ligands: Synthesis, structures and fluorescent properties. Polyhedron, 2016, 107, 19-26.	2.2	17
39	Controllable synthesis, growth mechanism and luminescence property of a novel monodisperse microsphere with a hole for Zn ₈ [(BO ₃) ₃ (OH) ₃]:Eu ³⁺ . CrystEngComm. 2016. 18. 1311-1320.	2.6	18
40	Co ₅ In(BTC) ₄ [B ₂ O ₄ (OH)] ₂ : the first MOF material constructed by borate polyanions and carboxylate mixed ligands. Dalton Transactions, 2016, 45, 66-69.	3.3	7
41	Thermochemical properties for a series of transition metal borates of M[B 12 O 14 (OH) 10] (M II = Mn,) Tj ETQq1	. <u>1.0</u> .7843	 14 rgBT
42	A Novel 3D Metal Coordination Polymer Based on Tetranuclear Zinc Cluster Building Blocks: Syntheses, Structures and Photoluminescent Property. Journal of Cluster Science, 2016, 27, 573-582.	3.3	6
43	Ionothermal Synthesis, Crystal Structure, and Luminescent Properties of Two Novel Layered Indium-1,4-Benzenedicarboxylate Complexes. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 675-680.	0.6	1
44	A Series of Alkaline Earth Metal Ions Doped Cobalt(II) Heterometallic Cluster Complexes with Nâ€(phosphonomethyl) Iminodiacetic Acid and 1,3,5â€Benzenetricarboxylate Acid as Coâ€ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 678-683.	1.2	3
45	Thermodynamic properties of microporous materials for two copper borates, MCuB7O12·H2O (M=Na,K). Journal of Chemical Thermodynamics, 2015, 89, 164-168.	2.0	6
46	Two novel coordination polymers constructed by the same mixed ligands of 1,3-bip and H2bpdc: Syntheses, structures and catalytic properties. Journal of Molecular Structure, 2015, 1098, 41-46.	3.6	15
47	Synthesis, Structure and Property of a 3D Heterometallic Complex Constructed by Trinuclear [In2Co(OH)2(COO)4] Cluster and BTC Ligand. Journal of Cluster Science, 2015, 26, 1959-1970.	3.3	3
48	Ionothermal synthesis, thermal behavior, and fluorescence of two gallium-1,4-benzenedicarboxylate-based MOFs. Journal of Coordination Chemistry, 2015, 68, 1765-1775.	2.2	4
49	A series of Eu3+ doped Zn[B3O3(OH)5]â^™H2O/ZnB4O7/ZnB2O4 phosphors: Facile preparation and photoluminescence properties. Materials Research Bulletin, 2015, 70, 75-81.	5.2	11
50	A novel Zn 6 Co 3 cluster-based heterometallic coordination polymer with PMG 3â ⁻ linker formed via in situ decarboxylation from H 4 PMIDA. Inorganic Chemistry Communication, 2015, 60, 107-110.	3.9	5
51	Thermodynamic properties of two zinc borates: 3ZnO·3B2O3·3.5H2O and 6ZnO·5B2O3·3H2O. Journal of Chemical Thermodynamics, 2015, 82, 88-92.	2.0	18
52	Two Novel Fe7Mg8 and Fe8Co7 Cluster-Based 3D Heterometallic Coordination Polymers with H4PMIDA and H3BTC as the Co-ligands: Synthesis, Structures, and Fluorescent Properties. Journal of Cluster Science, 2015, 26, 1115-1127.	3.3	2
53	Syntheses, structures and luminescent properties of four novel Cd/Zn(II) complexes constructed from dicarboxylate and bis(imidazole) co-ligands. Journal of Molecular Structure, 2015, 1081, 79-84.	3.6	15
54	Enhanced photoluminescence property of CaB2O4:Eu3+ phosphor prepared by calcining the Ca4B10O19·7H2O:Eu3+ precursor. Materials Research Bulletin, 2014, 49, 88-93.	5.2	19

#	Article	IF	Citations
55	Synthesis, characterization, and thermochemical property of a novel mixed alkali metal borate: NaCs[B10O14(OH)4]. Journal of Thermal Analysis and Calorimetry, 2014, 116, 1019-1025.	3.6	4
56	Solvothermal Syntheses and Crystal Structures of Two Novel Borates: [(CH3)3NH][B5O6(OH)4] and Na2[H2TMED][B7O9(OH)5]2. Journal of Cluster Science, 2014, 25, 893-903.	3.3	8
57	Preparation of Ni 3 B 2 O 6 nanosheet-based flowerlike architecture by a precursor method and its electrochemical properties in lithium-ion battery. Solid State Sciences, 2014, 37, 131-135.	3.2	21
58	Thermodynamic properties of microporous materials for two borophosphates, K[ZnBP2O8] and NH4[ZnBP2O8]. Journal of Chemical Thermodynamics, 2014, 69, 43-47.	2.0	16
59	Thermochemical properties for a series of microporous borophosphates of MI[ZnBP2O8] (MI=Na, K, Rb,) Tj ETQq1	1.0.7843 2.0	14 rgBT /O
60	Preparation of LaB3O6:Eu3+ phosphors by a facile precursor method and their luminescent properties. Materials Research Bulletin, 2014, 52, 112-116.	5.2	9
61	Standard molar enthalpies of formation for the two mixed alkali/alkaline earth metal borates of LiBaB9O15 and NaBaB9O15. Thermochimica Acta, 2013, 563, 62-66.	2.7	8
62	Preparation of Ca[B6O9(OH)2]·3H2O nanomaterials by a phase transformation method and their flame retardant and thermodynamic properties. Powder Technology, 2013, 246, 26-30.	4.2	14
63	Thermodynamic properties of two mixed alkali metal borates with NLO behaviour: Li6Rb5B11O22 and Li4Cs3B7O14. Journal of Chemical Thermodynamics, 2013, 65, 95-99.	2.0	2
64	Preparation, characterization and luminescent properties of a hydrous red phosphor SrB6O10·5H2O:Eu3+ with different morphologies. Journal of Luminescence, 2013, 140, 114-119.	3.1	20
65	Synthesis, characterization and fluorescence properties of two novel inorganic–organic hybrid gallium/indium borates. Inorganica Chimica Acta, 2013, 404, 219-223.	2.4	6
66	Thermodynamic properties of microporous crystals for two hydrated aluminoborates, K2[Al(B5O10)]·4H2O and (NH4)2 [Al(B5O10)]·4H2O. Journal of Chemical Thermodynamics, 2013, 58, 129-133	3.2.0	13
67	Thermodynamic properties of microporous crystals for two hydrated borogermanates, K2[Ge(B4O9)]·2H2O and K4[B8Ge2O17(OH)2]. Journal of Chemical Thermodynamics, 2013, 61, 27-31.	2.0	7
68	Standard molar enthalpies of formation for a series of microporous crystals of Na2[MIIB3P2O11(OH)]·0.67H2O (MII=Mg, Mn, Fe, Co, Ni, Cu, Zn). Journal of Chemical Thermodynamics, 2012, 55, 213-217.	2.0	12
69	Synthesis, Characterization, and Thermochemical Properties of a Microporous Crystal Material for Rb2[Ga(B5O10)]·4H2O. Journal of Chemical & Engineering Data, 2012, 57, 1964-1969.	1.9	3
70	A novel 3D open framework constructed by [Co15(PMIDA)6(H2O)12] clusters and BTC ligands. Inorganic Chemistry Communication, 2012, 15, 281-284.	3.9	8
71	Preparation of Zn3B10O18Â \cdot 14H2O nanomaterials and their thermochemical properties. Thermochimica Acta, 2012, 539, 56-61.	2.7	6
72	Thermodynamic properties of microporous crystals of Na2[ZnB3P2O11(OH)]·0.67H2O. Journal of Chemical Thermodynamics, 2012, 48, 190-193.	2.0	2

#	Article	IF	Citations
73	Hydrothermal Synthesis and Thermodynamic Property of the Zeolite-Like Galloborate of K ₂ [Ga(B ₅ O ₁₀)]·4H ₂ O. Journal of Chemical & Engineering Data, 2011, 56, 2438-2442.	1.9	1
74	Standard Molar Enthalpies of Formation for the Two Alkali Metal Borates, Na ₆ [B ₄ O ₅ (OH) ₄] ₃ ·8H ₂ O and K ₄]. Journal of Chemical & amp; Engineering Data, 2011, 56, 102-105.	1.9	9
7 5	Syntheses, characterization, and crystal structures of two fluorinated gallium phosphates templated by organic amines. Journal of Coordination Chemistry, 2011, 64, 1254-1264.	2.2	0
76	A novel inorganic and organic mixture cations templated indium phosphate: Synthesis and crystal structure. Inorganica Chimica Acta, 2011, 378, 323-325.	2.4	4
77	Hydrothermal synthesis and thermochemistry of metalloborophosphate of Na2[CuB3P2O11(OH)]·0.67H2O. Journal of Chemical Thermodynamics, 2011, 43, 966-969.	2.0	7
78	Controllable synthesis and flame retardant properties of bunch-, chrysanthemum-, and plumy-like 4ZnO·B2O3·H2O nanostructures. Powder Technology, 2011, 210, 208-211.	4.2	12
79	Thermochemistry of two lead borates; Pb(BO2)2·H2O and PbB4O7·4H2O. Thermochimica Acta, 2011, 512, 124-128.	2.7	3
80	Determination of standard molar enthalpies of formation for the two lead borates: Pb4B10O19Â-2.5H2O and Pb6B11O18(OH)9. Thermochimica Acta, 2011, 515, 91-95.	2.7	2
81	Preparation of cluster-like nanostructure and nanoribbon for 4ZnO·B2O3·H2O and the evaluation of their flame retardant properties by a thermal analysis method. Thermochimica Acta, 2010, 506, 52-56.	2.7	16
82	Synthesis, crystal structure, and luminescence of a new coordination polymer, $\{[Cd9(IDC)2(HIDC)6(Bipy)4] \hat{A}\cdot 2N(CH3)(CH2CH3)2 \hat{A}\cdot 2DMF\}$ n. Journal of Coordination Chemistry, 2010, 63, 2286-2295.	2.2	10
83	Hydrothermal Synthesis, Characterization, and Thermodynamic Properties of a New Lithium Borate, Li3B5O8(OH)2. Journal of Chemical & Engineering Data, 2010, 55, 2682-2686.	1.9	13
84	Standard Molar Enthalpies of Formation for the Two Alkali Metal Borates Li ₈ [B ₁₆ O ₂₆ (OH) ₄]·6H ₂ O and Cs ₂ [B ₇ O ₉ (OH) ₅]. Journal of Chemical & amp; Engineering Data, 2009, 54, 830-832.	1.9	8
85	Synthesis and thermochemistry of two zinc borates, Zn2B6O11·7H2O and Zn3B10O18·14H2O. Thermochimica Acta, 2009, 484, 27-31.	2.7	31
86	Hydrothermal synthesis and thermodynamic properties of 2ZnO·3B2O3·3H2O. Journal of Chemical Thermodynamics, 2009, 41, 775-778.	2.0	15
87	Hydrothermal Synthesis and Standard Molar Enthalpy of Formation of Zinc Borate of 4ZnO·B ₂ O ₃ ·H ₂ O. Journal of Chemical & Data, 2009, 54, 2789-2790.	1.9	10
88	Li8[B16O26(OH)4] \hat{A} ·6H2O: A novel lithium borate with a larger polyborate anion. Inorganic Chemistry Communication, 2008, 11, 893-895.	3.9	9
89	Synthesis and enthalpy of formation of SrB4O7·3H2O. Thermochimica Acta, 2008, 470, 113-114.	2.7	0
90	Preparation of nanoplates assembled 4CaO·5B2O3·7H2O oval-like microspheres via a hydrothermal method. Materials Letters, 2008, 62, 2692-2695.	2.6	22

#	Article	IF	CITATIONS
91	Syntheses and crystal structures of rubidium and cesium 3,5-dinitropyrid-2-onate, 3,5-dinitropyrid-4-onate and 3,5-dinitro-4-pyridone-N-hydroxylate. Journal of Coordination Chemistry, 2008, 61, 865-881.	2.2	3
92	Synthesis and Thermodynamic Properties of K2Ba[B4O5(OH)4]2·8H2O. Journal of Chemical & Engineering Data, 2008, 53, 1163-1166.	1.9	7
93	Standard Molar Enthalpies of Formation for the Two Polymorphs of Na2B5O8(OH)·2H2O. Journal of Chemical & Chem	1.9	10
94	Determination of Standard Molar Enthalpies of Formation for the Two Barium Borates BaB2O4 \hat{A} ·xH2O (x= 4, 0) by Microcalorimetry. Journal of Chemical & Engineering Data, 2007, 52, 487-490.	1.9	7
95	K2[Ga(B5O10)]·4H2O: The First Chiral Zeolite-like Galloborate with Large Odd 11-Ring Channels. Inorganic Chemistry, 2007, 46, 2965-2967.	4.0	55
96	Synthesis, Crystal Structure, Vibrational Spectroscopy and Thermal Behavior of the First Alkali Metal Hydrated Hexaborate:K ₂ [B ₆ O ₉ (OH) ₂]. Chinese Journal of Chemistry, 2007, 25, 1131-1134.	4.9	9
97	Synthesis, characterization and thermochemistry of K2B5O8(OH)·2H2O. Thermochimica Acta, 2007, 454, 23-25.	2.7	16
98	Thermodynamic properties of K2Sr[B4O5(OH)4]2·10H2O. Thermochimica Acta, 2007, 459, 130-132.	2.7	6
99	Synthesis and thermochemistry of SrB2O4·2.5H2O and SrB6O10·5H2O. Thermochimica Acta, 2007, 463, 87-89.	2.7	5
100	Standard Molar Enthalpies of Formation for the Two Hydrated Calcium BoratesxCaO·5B2O3·yH2O (x= 2) Tj E	TQq000	rgBŢ_/Overloc
101	Two New Borates Containing the First Examples of Large Isolated Polyborate Anions:Â Chain [B7O9(OH)5]2-and Ring [B14O20(OH)6]4 Inorganic Chemistry, 2006, 45, 1430-1432.	4.0	99
102	A New Hydrated Cesium Heptaborate Cs2[B7O9(OH)5]:  Synthesis and Crystal Structure. Crystal Growth and Design, 2006, 6, 1247-1249.	3.0	43
103	Synthesis, crystal structure and thermal behavior of Na4[B10O16(OH)2]·4H2O. Journal of Alloys and Compounds, 2006, 407, 334-339.	5.5	17
104	Synthesis, crystal structure and thermal behavior of a new molybdenum–oxygen cluster: [Ni(en)3]2(H3BO3)(MoO4)2·(6H2O). Journal of Alloys and Compounds, 2006, 426, 97-100.	5.5	2
105	Synthesis, crystal structure and vibrational spectroscopy of a novel mixed ligands Ni(II) pentaborate: [Ni(C4H10N2)(C2H8N2)2][B5O6(OH)4]2. Inorganica Chimica Acta, 2006, 359, 519-524.	2.4	54
106	Synthesis and thermochemistry of SrB2O4·4H2O and SrB2O4. Thermochimica Acta, 2006, 448, 59-62.	2.7	13
107	Thermochemistry of triimidazolium nonaborate. Thermochimica Acta, 2005, 436, 156-158.	2.7	1
108	Thermochemistry of hexamethylenetetramine pentaborate. Thermochimica Acta, 2005, 439, 151-153.	2.7	4

ZHI-HONG LIU

#	Article	IF	CITATIONS
109	Study on the Phase Equilibrium of the Ternary System Ethanolâ€Cesium Carbonateâ€Water at 10, 30 and 50 ŰC. Chinese Journal of Chemistry, 2004, 22, 14-18.	4.9	4
110	Synthesis, Characterization and Thermochemistry of 2MgO ·B ₂ O ₃ ·1.5H ₂ O. Chinese Journal of Chemistry, 2003, 21, 1569-1572.	4.9	2
111	Synthesis and Thermodynamic Properties of MgO·B‹sub›2‹/sub›O‹sub›3‹/sub›Â·4H‹sub›2‹/sub›O. Chinese Journal of Chemistry, 2002, 20, 1519-1522.	4.9	3