
Monika Thol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3951640/publications.pdf Version: 2024-02-01

Μονικλ Τησι

#	Article	IF	CITATIONS
1	Equation of State for the Lennard-Jones Fluid. Journal of Physical and Chemical Reference Data, 2016, 45, .	4.2	133
2	Equation of State for the Thermodynamic Properties of trans-1,3,3,3-Tetrafluoropropene [R-1234ze(E)]. International Journal of Thermophysics, 2016, 37, 1.	2.1	97
3	Modified Entropy Scaling of the Transport Properties of the Lennard-Jones Fluid. Journal of Physical Chemistry B, 2019, 123, 6345-6363.	2.6	90
4	How well does the Lennard-Jones potential represent the thermodynamic properties of noble gases?. Molecular Physics, 2017, 115, 1104-1121.	1.7	59
5	Equation of State for the Lennard-Jones Truncated and Shifted Model Fluid. International Journal of Thermophysics, 2015, 36, 25-43.	2.1	53
6	Fundamental equation of state correlation for hexamethyldisiloxane based on experimental and molecular simulation data. Fluid Phase Equilibria, 2016, 418, 133-151.	2.5	46
7	A Reference Equation of State for Heavy Water. Journal of Physical and Chemical Reference Data, 2018, 47, .	4.2	44
8	EOS-LNG: A Fundamental Equation of State for the Calculation of Thermodynamic Properties of Liquefied Natural Gases. Journal of Physical and Chemical Reference Data, 2019, 48, .	4.2	34
9	Speed of Sound Measurements and Fundamental Equations of State for Octamethyltrisiloxane and Decamethyltetrasiloxane. Journal of Chemical & Engineering Data, 2017, 62, 2633-2648.	1.9	33
10	Comparative study of the Grüneisen parameter for 28 pure fluids. Journal of Chemical Physics, 2016, 144, 244505.	3.0	32
11	Molecular Models for the Hydrogen Age: Hydrogen, Nitrogen, Oxygen, Argon, and Water. Journal of Chemical & Engineering Data, 2018, 63, 305-320.	1.9	32
12	Fundamental equation of state for ethylene oxide based on a hybrid dataset. Chemical Engineering Science, 2015, 121, 87-99.	3.8	29
13	Communication: Fundamental equation of state correlation with hybrid data sets. Journal of Chemical Physics, 2013, 139, 041102.	3.0	26
14	Thermodynamic Properties of Octamethylcyclotetrasiloxane. Journal of Chemical & Engineering Data, 2016, 61, 2580-2595.	1.9	25
15	New Equations of State for Binary Hydrogen Mixtures Containing Methane, Nitrogen, Carbon Monoxide, and Carbon Dioxide. Journal of Physical and Chemical Reference Data, 2021, 50, .	4.2	20
16	Thermodynamic Properties of Dodecamethylpentasiloxane, Tetradecamethylhexasiloxane, and Decamethylcyclopentasiloxane. Industrial & Engineering Chemistry Research, 2019, 58, 9617-9635.	3.7	17
17	The Behavior of IAPWS-95 from 250 to 300 K and Pressures up to 400 MPa: Evaluation Based on Recently Derived Property Data. Journal of Physical and Chemical Reference Data, 2015, 44, .	4.2	15
18	Speed of Sound Measurements and a Fundamental Equation of State for Hydrogen Chloride. Journal of Chemical & Engineering Data, 2018, 63, 2533-2547.	1.9	15

Monika Thol

#	Article	IF	CITATIONS
19	Dynamic Viscosity of Binary Fluid Mixtures: A Review Focusing on Asymmetric Mixtures. International Journal of Thermophysics, 2021, 42, 1.	2.1	14
20	A New Functional Form for Equations of State for Some Weakly Associating Fluids. International Journal of Thermophysics, 2014, 35, 783-811.	2.1	13
21	Equation of state for 1,2-dichloroethane based on a hybrid data set. Molecular Physics, 2017, 115, 1166-1185.	1.7	13
22	Empirical Fundamental Equations of State for Pure Fluids and Mixtures. , 2020, , 365-407.		9
23	Fundamental Thermodynamic Models for Mixtures Containing Ammonia. Fluid Phase Equilibria, 2020, 511, 112496.	2.5	8
24	A fundamental equation of state for the calculation of thermodynamic properties of chlorine. AICHE Journal, 2021, 67, e17326.	3.6	8
25	Speed-of-Sound Measurements and a Fundamental Equation of State for Propylene Glycol. Journal of Physical and Chemical Reference Data, 2021, 50, .	4.2	6
26	A new model combining Helmholtz energy equations of state with excess Gibbs energy models to describe reactive mixtures. Chemical Engineering Science, 2022, 252, 117261.	3.8	6
27	A Fundamental Equation of State for Chloroethene for Temperatures from the Triple Point to 430ÂK and Pressures to 100ÂMPa. International Journal of Thermophysics, 2022, 43, 1.	2.1	5
28	Thermodynamic Properties of Methyl Diethanolamine. International Journal of Thermophysics, 2022, 43, 1.	2.1	4
29	Equations of State for the Thermodynamic Properties of <i>n</i> -Perfluorobutane, <i>n</i> -Perfluoropentane, and <i>n</i> -Perfluorohexane. Industrial & Engineering Chemistry Research, 2021, 60, 17207-17227.	3.7	4
30	Equation of State for Solid Benzene Valid for Temperatures up to 470 K and Pressures up to 1800 MPa. Journal of Physical and Chemical Reference Data, 2021, 50, .	4.2	4
31	Combination of Gibbs and Helmholtz Energy Equations of State in a Multiparameter Mixture Model Using the IAPWS Seawater Model as an Example. International Journal of Thermophysics, 2022, 43, 1.	2.1	2
32	How well does the Tang-Toennies potential represent the thermodynamic properties of argon?. Molecular Physics, 2022, 120, .	1.7	2