
Vasilis G Gregoriou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3951354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational design on n-type organic materials for high performance organic photovoltaics. RSC Advances, 2013, 3, 7160.	3.6	138
2	Rodâ^'Coil Block Copolymers Incorporating Terfluorene Segments for Stable Blue Light Emission. Journal of Physical Chemistry B, 2005, 109, 8755-8760.	2.6	77
3	Influence of the Coil Block on the Properties of Rodâ [~] Coil Diblock Copolymers with Oligofluorene as the Rigid Segment. Macromolecules, 2004, 37, 2502-2510.	4.8	70
4	Highly Efficient Indoor Organic Solar Cells by Voltage Loss Minimization through Fine-Tuning of Polymer Structures. ACS Applied Materials & Interfaces, 2019, 11, 36905-36916.	8.0	49
5	Enhancement of the Power Conversion Efficiency in Organic Photovoltaics by Unveiling the Appropriate Polymer Backbone Enlargement Approach. Advanced Functional Materials, 2016, 26, 1840-1848.	14.9	28
6	New conjugated polymer nanoparticles with high photoluminescence quantum yields for far-red and near infrared fluorescence bioimaging. Materials Chemistry Frontiers, 2020, 4, 2357-2369.	5.9	25
7	The impact of thienothiophene isomeric structures on the optoelectronic properties and photovoltaic performance in quinoxaline based donor–acceptor copolymers. Polymer Chemistry, 2015, 6, 3098-3109.	3.9	24
8	The role of chemical structure in indacenodithienothiophene- <i>alt</i> -benzothiadiazole copolymers for high performance organic solar cells with improved photo-stability through minimization of burn-in loss. Journal of Materials Chemistry A, 2017, 5, 25064-25076.	10.3	24
9	Beyond Donor-Acceptor (D-A) Approach: Structure-Optoelectronic Properties-Organic Photovoltaic Performance Correlation in New D-A ₁ -D-A ₂ Low-Bandgap Conjugated Polymers. Macromolecular Rapid Communications, 2017, 38, 1600720.	3.9	20
10	Synthesis of Dâ€ <i>Ï€</i> â€Aâ€ <i>Ï€</i> type benzodithiopheneâ€quinoxaline copolymers by direct arylation and their application in organic solar cells. Journal of Polymer Science Part A, 2018, 56, 1457-1467.	2.3	20
11	Enhancement of the Power-Conversion Efficiency of Organic Solar Cells via Unveiling an Appropriate Rational Design Strategy in Indacenodithiophene-alt-quinoxaline π-Conjugated Polymers. ACS Applied Materials & Interfaces, 2018, 10, 10236-10245.	8.0	11
12	4 <i>H</i> -1,2,6-Thiadiazine-containing donor–acceptor conjugated polymers: synthesis, optoelectronic characterization and their use in organic solar cells. Journal of Materials Chemistry C, 2018, 6, 3658-3667.	5.5	10
13	Experimental and theoretical investigations on the optical and electrochemical properties of Ĩ€-conjugated donor-acceptor-donor (DAD) compounds toward a universal model. Journal of Chemical Physics, 2018, 149, 124902.	3.0	10
14	Indacenodithienothiophene-Based Ternary Organic Solar Cells. Frontiers in Energy Research, 2017, 4, .	2.3	8
15	Rational design of aqueous conjugated polymer nanoparticles as potential theranostic agents of breast cancer. Materials Chemistry Frontiers, 2021, 5, 4950-4962.	5.9	7
16	Effect of Aryl Substituents and Fluorine Addition on the Optoelectronic Properties and Organic Solar Cell Performance of a High Efficiency Indacenodithienothiopheneâ€ <i>alt</i> â€Quinoxaline π onjugated Polymer. Macromolecular Chemistry and Physics, 2019, 220, 1800418.	2.2	4