Hong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3951152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytogenetic and marker assisted identification of a wheat–Psathyrostachys huashanica Keng f. ex P.C.Kuo alien substitution line conferring processing quality and resistance to stripe rust. Genetic Resources and Crop Evolution, 2022, 69, 687-698.	1.6	5
2	Fine mapping and distribution analysis of hybrid necrosis genes Ne1 and Ne2 in wheat in China. Theoretical and Applied Genetics, 2022, 135, 1177-1189.	3.6	6
3	A truncated CC-NB-ARC gene TaRPP13L1-3D positively regulates powdery mildew resistance in wheat via the RanGAP-WPP complex-mediated nucleocytoplasmic shuttle. Planta, 2022, 255, 60.	3.2	9
4	Identification of Differentially Expressed Genes in Resistant Tetraploid Wheat (Triticum turgidum) under Sitobion avenae (F.) Infestation. International Journal of Molecular Sciences, 2022, 23, 6012.	4.1	1
5	An alternative splicing isoform of wheat TaYRG1 resistance protein activates immunity by interacting with dynamin-related proteins. Journal of Experimental Botany, 2022, 73, 5474-5489.	4.8	2
6	Development and Molecular Cytogenetic Identification of Two Wheat-Aegilops geniculata Roth 7Mg Chromosome Substitution Lines with Resistance to Fusarium Head Blight, Powdery Mildew and Stripe Rust. International Journal of Molecular Sciences, 2022, 23, 7056.	4.1	3
7	Identification and expression analysis of heatâ€shock proteins in wheat infected with powdery mildew and stripe rust. Plant Genome, 2021, 14, e20092.	2.8	10
8	A dominant spotted leaf gene TaSpl1 activates endocytosis and defense-related genes causing cell death in the absence of dominant inhibitors. Plant Science, 2021, 310, 110982.	3.6	4
9	Genome-wide identification, evolution, and expression of the <i>SNARE</i> gene family in wheat resistance to powdery mildew. PeerJ, 2021, 9, e10788.	2.0	6
10	Large-Scale Cloning and Comparative Analysis of TaNAC Genes in Response to Stripe Rust and Powdery Mildew in Wheat (Triticum aestivum L.). Genes, 2020, 11, 1073.	2.4	8
11	Gene co-expression network analysis provides a novel insight into the dynamic response of wheat to powdery mildew stress. Journal of Genetics, 2020, 99, 1.	0.7	6
12	Co-Regulation of Long Non-Coding RNAs with Allele-Specific Genes in Wheat Responding to Powdery Mildew Infection. Agronomy, 2020, 10, 896.	3.0	5
13	The Emerging Role of Long Non-Coding RNAs in Plant Defense Against Fungal Stress. International Journal of Molecular Sciences, 2020, 21, 2659.	4.1	25
14	Gene co-expression network analysis provides a novel insight into the dynamic response of wheat to powdery mildew stress. Journal of Genetics, 2020, 99, .	0.7	0
15	Transcriptome-wide alternative splicing modulation during plant-pathogen interactions in wheat. Plant Science, 2019, 288, 110160.	3.6	41
16	Transcriptome and Proteome-Based Network Analysis Reveals a Model of Gene Activation in Wheat Resistance to Stripe Rust. International Journal of Molecular Sciences, 2019, 20, 1106.	4.1	24
17	Molecular cytogenetic identification of a wheat – Thinopyrum ponticum substitution line with stripe rust resistance. Genome, 2017, 60, 860-867	2.0	29
18	Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. BMC Genomics, 2016, 17, 238.	2.8	74

Hong Zhang

#	Article	IF	CITATIONS
19	Molecular mapping and marker development for the Triticum dicoccoides-derived stripe rust resistance gene YrSM139-1B in bread wheat cv. Shaanmai 139. Theoretical and Applied Genetics, 2016, 129, 369-376.	3.6	24
20	Quantitative proteomics reveals the central changes of wheat in response to powdery mildew. Journal of Proteomics, 2016, 130, 108-119.	2.4	45
21	Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Plant Physiology and Biochemistry, 2015, 96, 356-363.	5.8	75
22	Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. BMC Genomics, 2014, 15, 898.	2.8	178
23	Long non-coding genes implicated in response to stripe rust pathogen stress in wheat (Triticum) Tj ETQq1 1 0.784	4314 rgBT 2.3	/Overlock
24	Molecular characterisation and expression of a pathogen-induced senescence-associated gene in wheat (Triticum aestivum). Australasian Plant Pathology, 2013, 42, 53-61.	1.0	2
25	Isolation and characterization of a wheat IF2 homolog required for innate immunity to stripe rust. Plant Cell Reports, 2013, 32, 591-600.	5.6	10
26	High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics, 2012, 124, 1549-1560.	3.6	54
27	Gene Expression in Wheat Induced by Inoculation with Puccinia striiformis West. Plant Molecular Biology Reporter, 2011, 29, 458-465.	1.8	18
28	Characterization of a wheat HSP70 gene and its expression in response to stripe rust infection and abiotic stresses. Molecular Biology Reports, 2011, 38, 301-307.	2.3	70
29	Characterization of Wheat Stripe Rust Resistance Genes in Shaanmai 139. Acta Agronomica Sinica(China), 2010, 36, 109-114	0.3	8